

Data sheet acquired from Harris Semiconductor SCHS030D – Revised December 2003

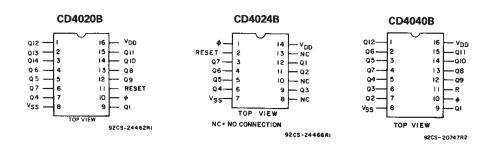
CMOS Ripple-Carry Binary Counter/Dividers

High-Voltage Types (20-Volt Rating)

CD4020B — 14 Stage CD4024B — 7 Stage CD4040B — 12 Stage

■ CD4020B, CD4024B, and CD4040B are ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of a counter advances one count on the negative transition of each input pulse; a high level on the RESET line resets the counter to its all zeros state. Schmitt trigger action on the input-pulse line permits unlimited rise and fall times. All inputs and outputs are buffered.

The CD4020B and CD4040B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4040B type also is supplied in 16-lead small-outline packages (M and M96 suffixes).


The CD4024B types are supplied in 14-lead hermetic dual-in-line ceramic packages (F3A suffix), 14-lead dual-in-line plastic packages (E suffix), 14-lead small-outline packages (M, MT, M96, and NSR suffixes), and 14-lead thin shrink small-outline packages (PW and PWR suffixes).

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)

	, CDD,
0.5V to +20V	Voltages referenced to V _{SS} Terminal) .
0.5V to V _{DD} +0.5V	INPUT VOLTAGE RANGE, ALL INPUTS .
±10mA	DC INPUT CURRENT, ANY ONE INPUT .
(P _D):	POWER DISSIPATION PER PACKAGE (
500mW	For TA = -55°C to +100°C
Derate Linearity at 12mW/°C to 200mW	
RANSISTOR	DEVICE DISSIPATION PER OUTPUT TR
ATURE RANGE (All Package Types) 100mW	FOR TA = FULL PACKAGE-TEMPERA
T _A)55°C to +125°C	OPERATING-TEMPERATURE RANGE (T
g)65°C to +150°C	STORAGE TEMPERATURE RANGE (Tsto
	LEAD TEMPERATURE (DURING SOLDE
.79mm) from case for 10s max+265°C	At distance $1/16 \pm 1/32$ inch (1.59 ± 0.

TERMINAL ASSIGNMENTS

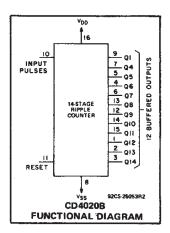
CD4020B, CD4024B, CD4040B Types

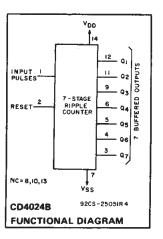
Features:

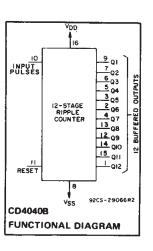
- Medium-speed operation
- Fully static operation
- Buffered inputs and outputs
- 100% tested for quiescent current at 20 V
- Standardized, symmetrical output characteristics
- Fully static operation
- Common reset
- 5-V, 10-V, and 15-V parametric ratings
- Maximum input current of 1 μA at 18 V over full package-temperature range;
 100 nA at 18 V and 25°C
- Noise margin (over full package-tempera-

ture range):

1 V at V_{DD} = 5 V


2 V at V_{DD} = 10 V


2.5 V at V_{DD} = 15 V


 Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Control counters
- Frequency dividers
- Timers
- Time-delay circuits

CD4020B, CD4024B, CD4040B Types

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Unless Otherwise Specified

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC		V _{DD}	Min.	Max.	UNITS
Supply Voltage Range (at T _A = Ful Temperature Range)		3	18	v	
Input-Pulse Frequency,	fφ	5 10 15	- - -	3.5 8 12	MHz
Input-Pulse Width,	t _W	5 10 15	140 60 40	- - -	ns
Input-Pulse Rise or Fall Time,	t _{rφ} , t _{fφ}	5 10 15	Unlim	nited	μς
Reset Pulse Width,	tw	5 10 15	200 80 60	_	ns
Reset Removal Time,	^t REM	5 10 15	350 150 100	- - -	ns

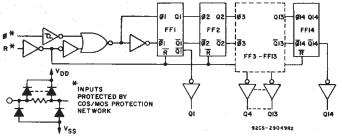


Fig. 1 - Logic diagram for CD40208.

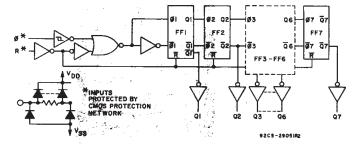


Fig. 2 - Logic diagram for CD4024B.

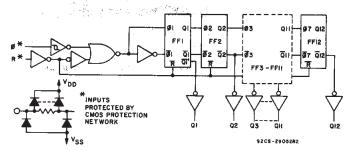


Fig. 3 - Logic diagram for CD4040B.

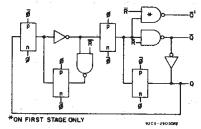


Fig. 4 - Detail of typical flip-flop stage.

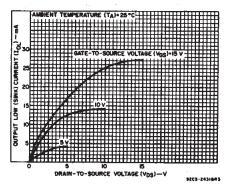


Fig. 5 — Typical output low (sink) current characteristics.

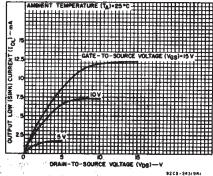


Fig. 6 — Minimum output low (sink) current characteristics.

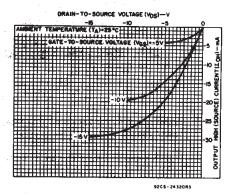


Fig. 7 — Typical output high (source) current characteristics,

CD4020B, CD4024B, CD4040B Types

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	COND	ITIO	15	LIMITS AT INDICATED TEMPERATURES (°C)							
ISTIC	٧o	VIN	VDD						+25		UNITS
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	
Quiescent Device		0,5	5	5	5	150	150	-	0.04	5	
Current,		0,10	10	10	10	300	300	_	0.04	10	μА
IDD Max.		0,15	15	20	20	600	600	_	0.04	20	
	_	0,20	20	100	100	3000	3000		0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1.	-	
(Sink) Current	0.5	0,10	10	1.6	1,5	1.1	0.9	1.3	2.6		
IOL Min.	1,5	0,15	15	4.2	4	2.8	2.4	34	6.8	- :	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	_	mA
(Source)	2.5	0,5	. 5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	: '
Current, IOH Min.	9.5	0,10	10	-1.6	-1:5	-1.1	-0.9	-1.3	-2.6	_	
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:		0,5	5	0.05				-	0	0.05	
Low-Level, VOL Max.	_	0,10	10	0.05				_	0	0.05	-
*OL		0,15	15	0.05					0	0.05	v
Output Voltage:	_	0,5	5	4.95			4.95	5	-]	•	
High-Level,	_	0,10	10	9.95				9.95	10		
VOH Min.	_	0,15	15	14.95				14.95	15	_	
Input Low Voltage, VIL Max.	0.5, 4.5	-	5	1,5			_	_	1.5		
	1, 9	, ·-	10	3				_	_	3	
	1.5,13.5	_	15	4			_	_	4	v	
Input High Voltage, VIH Min.	0.5, 4.5	_	5	3.5			3.5	_	-	'	
	1, 9		10	7				7			
	1.5,13.5		15			11		11	-	_	
Input Current IIN Max.	_	0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μΑ

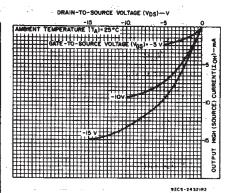


Fig. 8 - Minimum output high (source) current characteristics.

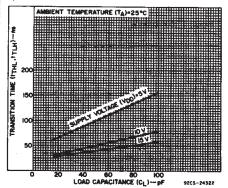
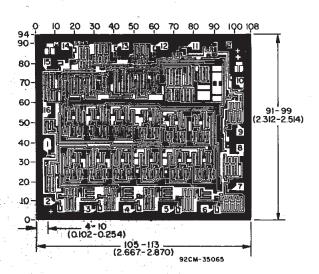
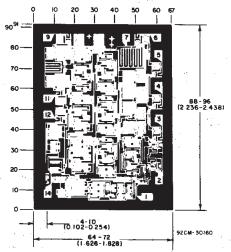




Fig. 9 — Typical transition time as a function of load capacitance.

Dimensions and Ped Leyout for CD4020BH. Dimensions and ped leyout for CD4040BH are identical.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

Dimensions and Pad Layout for CD4024BH.

CD4020B, CD4024B, CD4040B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω

-				LIMITS	3	UNITS
CHARACTERISTIC	TEST CONDITIONS	V _{DD} (V)	Min.	Тур.	Max.	
Input-Pulse Operation	•					
Propagation Delay Time, ϕ to		. 5	-	180	360	
Q ₁ Out; tpHL, tpLH		10		80	160	ns
TOTAL TEN		15	_	65	130	
0 40 0 14		_ 5	_	100	330	
Q _n to Q _n + 1; ^t PHL ^{, t} PLH		10		40	80	ns
'PHL' 'PLH		15	_	30	60	1
Transition Time,		5	-	100	200	
tTHL, tTLH		10	_	50	100	ns
		15	_	40	80	
AAC		5		70	140	
Minimum Input-Pulse Width, tw		10	_	30	60	ns
		15,	-	20	40	1
		5	Unlimited			
Input-Pulse Rise or Fall		10				μs
Time, $t_{r\phi}$, $t_{f\phi}$		15				·
Maximum Input-Pulse		5	3.5	7	_	
Frequency, f _ø		10	8	16		MHz
ψ		15	12	24		1
Input Capacitance, C ₁	Any Input		-	5	7.5	рF
Reset Operation						<u> </u>
Propagation Delay		- 5	_	140	280	
Time, tpHL		10	_	60	120	ns
·····o/ ·PPIL		15		50	100	1
Minimum Reset Pulse Width, t _W		5		100	200	
		10	. –	40	80	ns
		15		30	60	
Reset Removal Time,		5		175	350	
tREM		10	-	75	150	ns
Y Thairs		15	-	50	100	

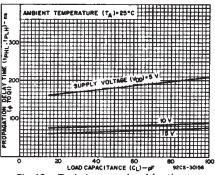


Fig. 10 — Typical propagation delay time as a function of load capacitance $(\phi \text{ to } Q_1)$.

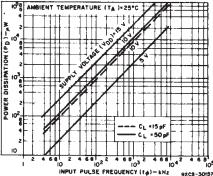


Fig. 11 — Typical dynamic power dissipation as a function of input pulse frequency for CD4020B.

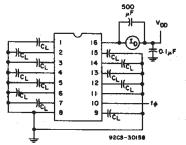


Fig. 12 – Dynamic power dissipation test circuit for CD4020B.

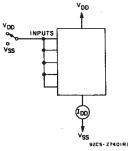


Fig. 13 – Quiescent device current test circuit.

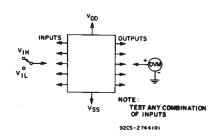


Fig. 14 — Input voltage test circuits.

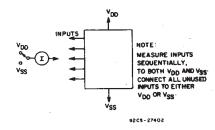
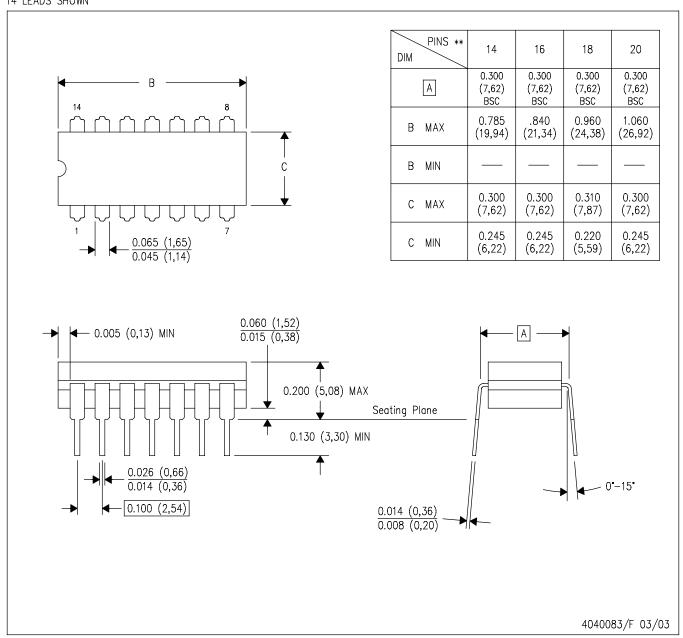
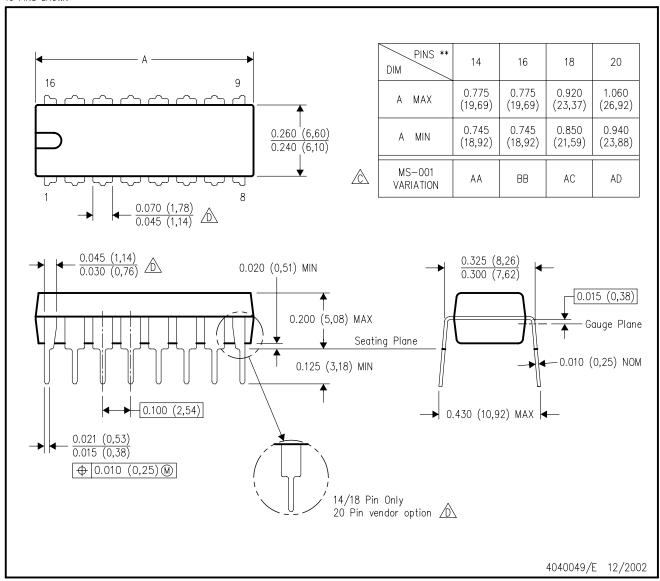



Fig. 15 - Input current test circuit.

14 LEADS SHOWN

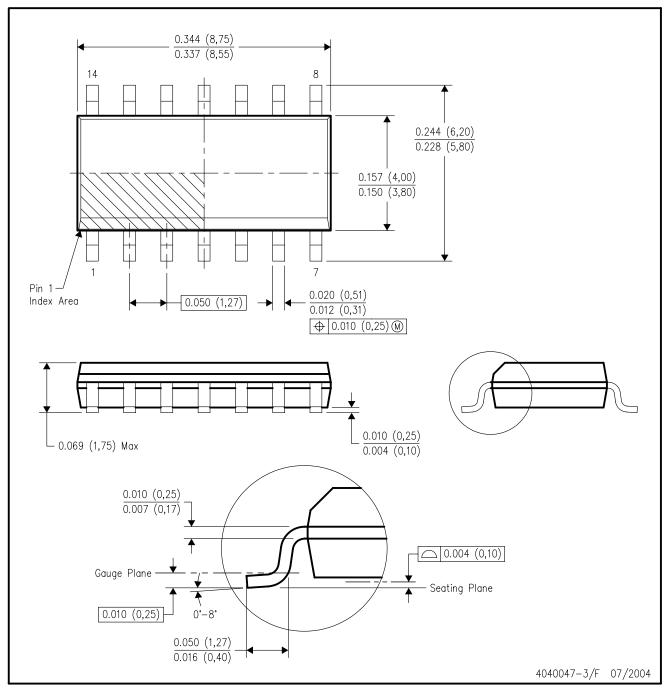


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

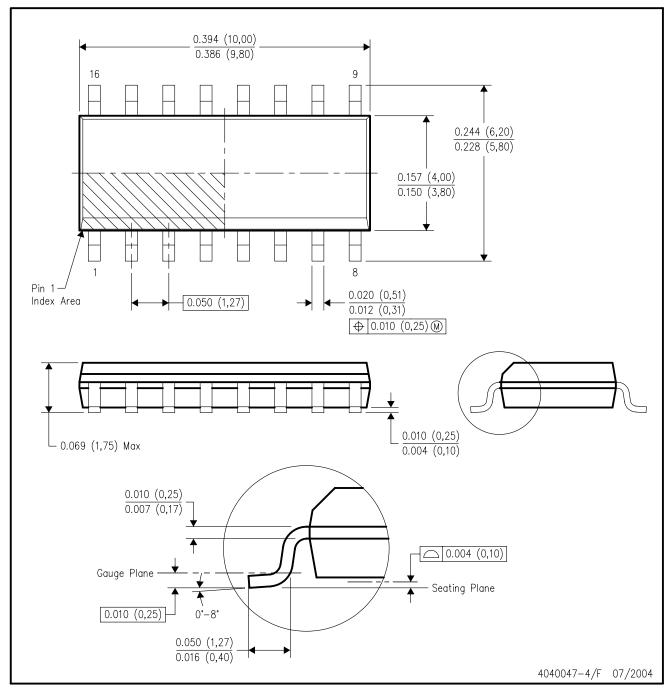
16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE

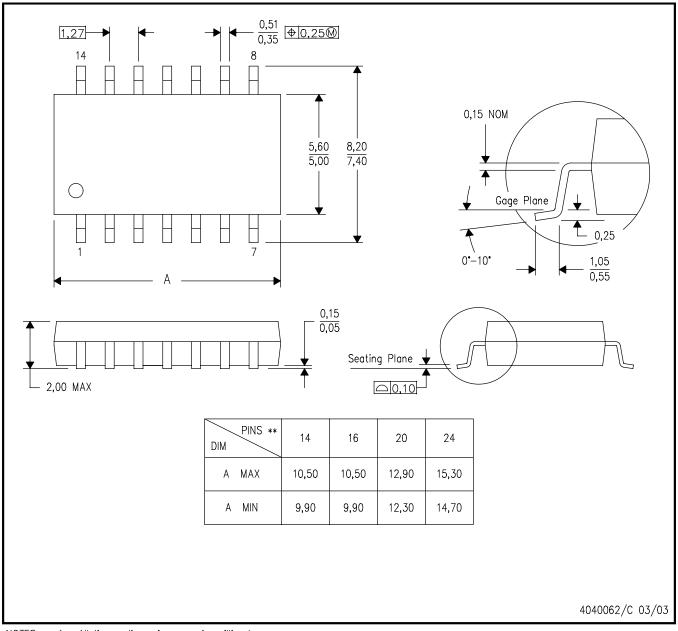


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

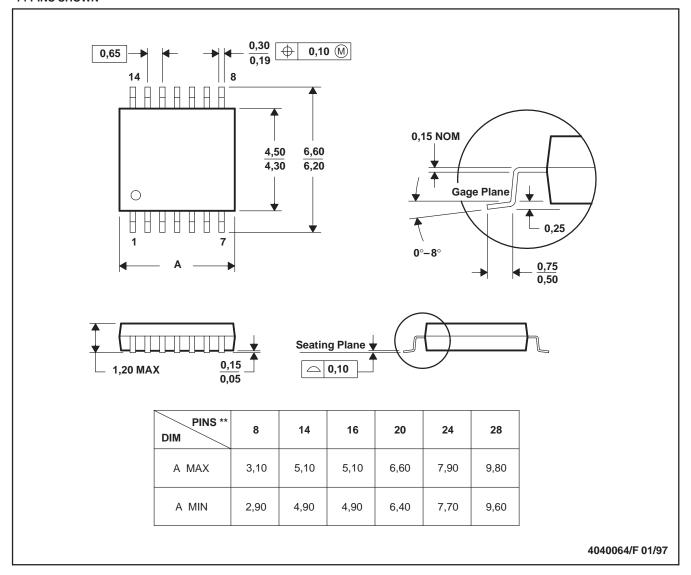


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated