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Preface

Goals and Strategies of this Book

The technical world is changing very rapidly. Inonly 15 years, the power of personal
computers has increased by afactor of nearly one-thousand. By all accounts, it will
increase by another factor of one-thousand in the next 15 years. This tremendous
power has changed the way science and engineering is done, and there is no better
example of this than Digital Signal Processing.

In the early 1980s, DSP was taught as a graduate level coursein electrical engineering.
A decade later, DSP had become a standard part of the undergraduate curriculum.
Today, DSP is a basic skill needed by scientists and engineers in many fields.
Unfortunately, DSP education has been slow to adapt to this change. Nearly all DSP
textbooks are still written in the traditional electrical engineering style of detailed and
rigorous mathematics. DSPisincredibly powerful, but if you can't understand it, you
can't useit!

This book was written for scientists and engineersin awide variety of fields. physics,
bioengineering, geology, oceanography, mechanical and electrical engineering, to name
just afew. The goal isto present practical techniques while avoiding the barriers of
detailed mathematics and abstract theory. To achieve this goal, three strategies were
employed in writing this book:

First, the techniques are explained, not simply proven to be true through mathematical
derivations. While much of the mathematicsisincluded, it is not used as the primary
means of conveying the information. Nothing beats a few well written paragraphs
supported by good illustrations.

Second, complex numbers are treated as an advanced topic, something to be learned
after the fundamental principles are understood. Chapters 1-29 explain all the basic
techniques using only algebra, and in rare cases, a small amount of elementary
calculus. Chapters 30-33 show how complex math extends the power of DSP,
presenting techniques that cannot be implemented with real numbers alone. Many
would view this approach as heresy! Traditional DSP textbooks are full of complex
math, often starting right from the first chapter.
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Third, very simple computer programs are used. Most DSP programs are written in
C, Fortran, or asimilar language. However, learning DSP has different requirements
than using DSP. The student needs to concentrate on the algorithms and techniques,
without being distracted by the quirks of a particular language. Power and flexibility
aren't important; simplicity iscritical. The programsin thisbook are written to teach
DSP in the most straightforward way, with all other factors being treated as secondary.
Good programming styleis disregarded if it makes the program logic more clear. For
instance:

1 asimplified version of BASIC is used

A line numbers are included

[ the only control structure used isthe FOR-NEXT loop
[ there are no /O statements

Thisisthe simplest programming style | could find. Some may think that this book
would be better if the programs had been writtenin C. | couldn't disagree more.

The Intended Audience

This book is primarily intended for a one year course in practical DSP, with the
students being drawn from a wide variety of science and engineering fields. The
suggested prerequisites are:

[ A coursein practical electronics: (op amps, RC circuits, etc.)
[ A course in computer programming (Fortran or similar)
[ Oneyear of calculus

This book was also written with the practicing professional in mind. Many everyday
DSP applications are discussed: digital filters, neural networks, data compression,
audio and image processing, etc. As much as possible, these chapters stand on their
own, not requiring the reader to review the entire book to solve a specific problem.

Support by Analog Devices

The Second Edition of this book includes two new chapters on Digital Signal
Processors, microprocessors specifically designed to carry out DSP tasks. Much of
the information for these chapters was generously provided by Analog Devices, Inc.,
aworld leader in the development and manufacturing of electronic components for
signal processing. ADI's encouragement and support has significantly expanded the
scope of this book, showing that DSP algorithms are only useful in conjunction with
the appropriate hardware.
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CHAPTER

32

The Laplace Transform

The two main techniques in signal processing, convolution and Fourier analysis, teach that a
linear system can be completely understood from its impulse or frequency response. Thisisa
very generalized approach, since the impulse and frequency responses can be of nearly any shape
or form. Infact, it istoo general for many applications in science and engineering. Many of the
parameters in our universe interact through differential equations. For example, the voltage
across an inductor is proportional to the derivative of the current through the device. Likewise,
the force applied to a mass is proportional to the derivative of its velocity. Physicsis filled with
these kinds of relations. The frequency and impulse responses of these systems cannot be
arbitrary, but must be consistent with the solution of these differential equations. This means that
their impul se responses can only consist of exponentials and sinusoids. The Laplace transform
is a technique for analyzing these special systems when the signals are continuous. The z-
transform is a similar technique used in the discrete case.

The Nature of the s-Domain

The Laplace transform is a well established mathematical technique for solving
differential equations. It is named in honor of the great French mathematician,
Pierre Simon De Laplace (1749-1827). Like all transforms, the Laplace
transform changes one signal into another according to some fixed set of rules
or equations. As illustrated in Fig. 32-1, the Laplace transform changes a
signal in the time domain into a signal in the s-domain, also called the s-
plane. The time domain signal is continuous, extends to both positive and
negative infinity, and may be either periodic or aperiodic. The Laplace
transform allows the time domain to be complex; however, this is seldom
needed in signal processing. In this discussion, and nearly all practical
applications, the time domain signal is completely real.

As shown in Fig. 32-1, the ssdomain is a complex plane, i.e., there are real

numbers along the horizontal axis and imaginary numbers along the vertical
axis. The distance along the real axis is expressed by the variable, o, a lower
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case Greek sigma. Likewise, the imaginary axis uses the variable, w, the
natural frequency. This coordinate system allows the location of any point to
be specified by providing values for ¢ and w. Using complex notation, each
location is represented by the complex variable, s, where: s= o+ jw. Just as
with the Fourier transform, signals in the s-domain are represented by capital
letters. For example, a time domain signal, x(t), is transformed into an s
domain signal, X(s), or alternatively, X(o,w). The s-plane is continuous, and
extends to infinity in all four directions.

In addition to having alocation defined by a complex number, each point in the
s-domain has a value that is a complex number. In other words, each location
in the s-plane has a real part and an imaginary part. As with all complex
numbers, the real & imaginary parts can alternatively be expressed as the
magnitude & phase.

Just as the Fourier transform analyzes signals in terms of sinusoids, the Laplace
transform analyzes signals in terms of sinusoids and exponentials. From a
mathematical standpoint, this makes the Fourier transform a subset of the more
elaborate Laplace transform. Figure 32-1 shows a graphical description of how
the ssdomain is related to the time domain. To find the values along a vertical
line in the s-plane (the values at a particular o), the time domain signal is first
multiplied by the exponential curve: e °'. The left half of the s-plane
multiplies the time domain with exponentials that increase with time (o < 0),
while in the right half the exponentials decrease with time (o > 0). Next, take
the complex Fourier transform of the exponentially weighted signal. The
resulting spectrum is placed along a vertical line in the s-plane, with the top
half of the s-plane containing the positive frequencies and the bottom half
containing the negative frequencies. Take specia note that the values on the
y-axis of the s-plane (o = 0) are exactly equal to the Fourier transform of the
time domain signal.

As discussed in the last chapter, the complex Fourier Transform is given by:

X(w) = }x(t)ej“’tdt

—

This can be expanded into the Laplace transform by first multiplying the time
domain signal by the exponential term:

X(0,w) = }[x(t)e“t]ej“’tdt

While this is not the simplest form of the Laplace transform, it is probably
the best description of the strategy and operation of the technique. To
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STEP1
Start with the time domain signal
called x(t)

STEP2

Multiply the time domain signal by
an infinite number of exponential
curves, each with a different decay
constant, o. That is, calculate the
signal: x(t) e * for each value of ¢
from negative to positive infinity.

N
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STEP3

Take the complex Fourier Transform
of each exponentially weighted time
domainsignal. That is, calculate:

? [x(t) e o] e Jotgt

— o0

for each value of ¢ from negative to
positive infinity.

STEP4

Arrange each spectrum along a
vertical line in the s-plane. The
positive frequencies are in the
upper half of the s-plane while the
negative frequencies are in the
lower half.

—)

FIGURE 32-1
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The Laplace transform. The Laplace transform convertsasignal in the time domain, x(t), into asignal in the s-domain,
X(s) or X(o,w). Thevaluesalong each vertical linein the s-domain can be found by multiplying the time domain signal
by an exponential curve with adecay constant o, and taking the complex Fourier transform. When the time domain is
entirely real, the upper half of the s-plane isamirror image of the lower half.
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place the equation in a shorter form, the two exponential terms can be
combined:

X(0,0) = [ x(t) e I)tdt

—o0

Finally, the location in the complex plane can be represented by the complex
variable, s, where s= o +jw. Thisallows the equation to be reduced to an even
more compact expression:

EQUATION 32-1

The Laplace transform. This equation o«
defines how a time domain signal, x(t), is _ st
related to an s-domain signal, X(s). The s- X(s) = f X(t) e > dt

domain variables, s, and X( ), are complex.
While the time domain may be complex, itis
usually real.

—o0

This is the final form of the Laplace transform, one of the most
important equations in signal processing and electronics. Pay specia
attention to the term: e %!, called a complex exponential. As shown by the
above derivation, complex exponentials are a compact way of representing both
sinusoids and exponentials in a single expression.

Although we have explained the Laplace transform as a two stage process
(multiplication by an exponential curve followed by the Fourier transform),
keep in mind that this is only a teaching aid, a way of breaking Eqg. 32-1 into
simpler components. The Laplace transform is a single equation relating x(t)
and X(s), not a step-by-step procedure. Equation 32-1 describes how to
calculate each point in the s-plane (identified by its values for ¢ and ») based
on the values of o, w», and the time domain signal, x(t). Using the Fourier
transform to simultaneously calculate all the points along a vertical line is
merely a convenience, not a requirement. However, it is very important to
remember that the values in the s-plane along the y-axis (o = 0) are exactly
equal to the Fourier transform. As explained later in this chapter, thisis a key
part of why the Laplace transform is useful.

To explore the nature of Eqg. 32-1 further, let's look at several individual points
in the s-domain and examine how the values at these locations are related to the
time domain signal. To start, recall how individual points in the frequency
domain are related to the time domain signal. Each point in the frequency
domain, identified by a specific value of w, corresponds to two sinusoids,
cos(wt) and sin(wt). Thereal part is found by multiplying the time domain
signal by the cosine wave, and then integrating from -~ to ». The imaginary
part is found in the same way, except the sine wave is used. If we are dealing
with the complex Fourier transform, the values at the corresponding negative
frequency, -», will be the complex conjugate (same real part, negative
imaginary part) of the values at w. The Laplace transform is just an extension
of these same concepts.
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s-Domain Associated Waveforms
60j cos(40t)e**
A+A’ : : : :
o C B A .
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FIGURE 32-2 ol i i
Waveforms associated with the s-domain. Each location E :
in the s-domain is identified by two parameters: ¢ and w. ?;1 1
These parameters also define two waveforms associated < T g
with each location. If we only consider pairs of points |  greeieeieebebn
(such as: A&A’, B&B’, and C&C’), the two waveforms ; ; ;
associated with each location are sine and cosine waves of Time

frequency o, with an exponentially changing amplitude
controlled by o.

Figure 32-2 shows three pairs of points in the s-plane: A&A’, B&B’, and
C&C'. Just asin the complex frequency spectrum, the points at A, B, & C (the
positive frequencies) are the complex conjugates of the pointsat A", B’, & C’
(the negative frequencies). The top half of the s-plane is a mirror image of the
lower half, and both halves are needed to correspond with a real time domain
signal. In other words, treating these points in pairs bypasses the complex
math, allowing us to operate in the time domain with only real numbers.

Since each of these pairs has specific values for ¢ and tw, there are two
waveforms associated with each pair: cos(wt) e °! and sin(wt)e °t. For
instance, points A&A' are at alocation of =15 and w = £40, and therefore
correspond to the waveforms: cos(40t) e °! and sin(40t) e *°!. Asshownin
Fig. 32-2, these are sinusoids that exponentially decreases in amplitude as time
progresses. In this same way, the sine and cosine waves associated with B& B’
have a constant amplitude, resulting from the value of ¢ being zero. Likewise,
the sine and cosine waves that are associated with locations C&C’
exponentially increases in amplitude, since o is negative.
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The value at each location in the s-plane consists of a real part and an
imaginary part. The real part is found by multiplying the time domain signal
by the exponentially weighted cosine wave and then integrated from -« to «.
The imaginary part is found in the same way, except the exponentially weighted
sine wave is used instead. It looks like this in egquation form, using the real
part of A&A’ as an example:

ReX(0=1.5,0=+40) = f X(t) cos(40t) e +°dt

—o0

Figure 32-3 shows an example of a time domain waveform, its frequency
spectrum, and its s-domain representation. The example time domain signal is
a rectangular pulse of width two and height one. As shown, the complex
Fourier transform of this signal is a sinc function in the real part, and an
entirely zero signal in the imaginary part. The s-domain is an undulating two-
dimensional signal, displayed here as topographical surfaces of the real and
imaginary parts. The mathematics works like this:

o 1
X = fx(t)e’Stdt = fle’“dt
-1

—o0

In words, we start with the definition of the Laplace transform (Eq. 32-1), plug
in the unity value for x(t), and change the limits to match the length of the
nonzero portion of the time domain signal. Evaluating this integral provides
the s-domain signal, expressed in terms of the complex location, s, and the
complex value, X(s):

S _ A-S
X(9) _ e -e-

While this is the most compact form of the answer, the use of complex
variables makes it difficult to understand, and impossible to generate a visual
display, such as Fig. 32-3. The solution is to replace the complex variable, s,
with o +jw, and then separate the real and imaginary parts:

ocos(w)[e’-e°] + wsn(w)[e’+e ]

ReX(o,w) = . >
0 +W

ImX(0o,w) = osn(w)[e’+e™°] - wcos(w)[e’-e?]

0% +w?
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Time Domain
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The topographical surfaces in Fig. 32-3 are graphs of these equations. These
eguations are quite long and the mathematics to derive them is very tedious.
This brings up a practical issue: with algebra of this complexity, how do we
know that we haven't made an error in the calculations? One check isto verify
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that these equations reduce to the Fourier transform along the y-axis. Thisis
done by setting o to zero in the equations, and simplifying:

2 s5n()

ReX (o, w) ImX (o0, ) = 0

o=0 o=0

Asillustrated in Fig. 32-3, these are the correct frequency domain signals, the
same as found by directly taking the Fourier transform of the time domain
waveform.

Strategy of the Laplace Transform

An analogy will help in explaining how the Laplace transform is used in signal
processing. Imagine you are traveling by train at night between two cities.
Y our map indicates that the path is very straight, but the night is so dark you
cannot see any of the surrounding countryside. With nothing better to do, you
notice an altimeter on the wall of the passenger car and decide to keep track of
the elevation changes along the route.

Being bored after a few hours, you strike up a conversation with the conductor:
"Interesting terrain,” you say. "It seems we are generally increasing in
elevation, but there are a few interesting irregularities that | have observed."
Ignoring the conductor's obvious disinterest, you continue: "Near the start of
our journey, we passed through some sort of abrupt rise, followed by an equally
abrupt descent. Later we encountered a shallow depression." Thinking you
might be dangerous or demented, the conductor decides to respond: "Yes, |
guess that is true. Our destination is located at the base of a large mountain
range, accounting for the general increase in elevation. However, aong the
way we pass on the outskirts of a large mountain and through the center of a
valley."

Now, think about how you understand the relationship between elevation and
distance along the train route, compared to that of the conductor. Since you
have directly measured the elevation along the way, you can rightly claim that
you know everything about the relationship. In comparison, the conductor
knows this same complete information, but in a simpler and more intuitive
form: the location of the hills and valleys that cause the dips and humps along
the path. While your description of the signal might consist of thousands of
individual measurements, the conductor's description of the signal will contain
only a few parameters.

To show how thisis analogous to signal processing, imagine we are trying
to understand the characteristics of some electric circuit. To aid in our
investigation, we carefully measure the impulse response and/or the
frequency response. As discussed in previous chapters, the impulse and
frequency responses contain complete information about this linear system.
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However, this does not mean that you know the information in the simplest
way. In particular, you understand the frequency response as a set of values
that change with frequency. Just as in our train analogy, the frequency
response can be more easily understood in terms of the terrain surrounding the
frequency response. That is, by the characteristics of the s-plane.

With the train analogy in mind, look back at Fig. 32-3, and ask: how does
the shape of this s-domain aid in understanding the frequency response?
The answer is, it doesn't! The s-plane in this example makes a nice graph,
but it provides no insight into why the frequency domain behaves as it does.
This is because the Laplace transform is designed to analyze a specific class
of time domain signals: impulse responses that consist of sinusoids and
exponentials. If the Laplace transform is taken of some other waveform
(such as the rectangular pulse in Fig. 32-3), the resulting s-domain is
meaningless.

As mentioned in the introduction, systems that belong to this class are
extremely common in science and engineering. This is because sinusoids and
exponentials are solutions to differential equations, the mathematics that
controls much of our physical world. For example, all of the following systems
are governed by differential equations: electric circuits, wave propagation,
linear and rotational motion, electric and magnetic fields, heat flow, etc.

Imagine we are trying to understand some linear system that is controlled by
differential equations, such as an electric circuit. Solving the differential
equations provides a mathematical way to find the impulse response.
Alternatively, we could measure the impulse response using suitable pulse
generators, oscilloscopes, data recorders, etc. Before we inspect the newly
found impulse response, we ask ourselves what we expect to find. There are
several characteristics of the waveform that we know without even looking.
First, the impulse response must be causal. In other words, the impulse
response must have a value of zero until the input becomes nonzero at t = 0.
This is the cause and effect that our universe is based upon.

The second thing we know about the impulse response is that it will be
composed of sinusoids and exponentials, because these are the solutions to
the differential equations that govern the system. Try as we might, we will
never find this type of system having an impulse response that is, for
example, a square pulse or triangular waveform. Third, the impulse
response will be infinite in length. That is, it has nonzero values that
extend from t = 0 to t = +~. This is because sine and cosine waves have a
constant amplitude, and exponentials decay toward zero without ever
actually reaching it. If the system we are investigating is stable, the
amplitude of the impulse response will become smaller as time increases,
reaching a value of zero at t= +~. There is also the possibility that the
system is unstable, for example, an amplifier that spontaneously oscillates
due to an excessive amount of feedback. In this case, the impulse response
will increase in amplitude as time increases, becoming infinitely large.
Even the smallest disturbance to this system will produce an unbounded
output.
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FIGURE 32-4

The general mathematics of the Laplace transform is very similar to that of the
Fourier transform. In both cases, predetermined waveforms are multiplied by
the time domain signal, and the result integrated. At first glance, it would
appear that the strategy of the Laplace transform is the same as the Fourier
transform: correlate the time domain signal with a set of basis functions to
decompose the waveform. Not true! Even though the mathematics is much the
same, the rationale behind the two techniques is very different. The Laplace
transform probes the time domain waveform to identify its key features. the
frequencies of the sinusoids, and the decay constants of the exponentials. An
example will show how this works.

The center column in Fig. 32-5 shows the impulse response of the RLC notch
filter discussed in Chapter 30. It contains an impulse at t = 0, followed by an
exponentially decaying sinusoid. As illustrated in (a) through (e), we will
probe this impulse response with various exponentially decaying sinusoids.
Each of these probing waveforms is characterized by two parameters: w, that
determines the sinusoidal frequency, and o, that determines the decay rate. In
other words, each probing waveform corresponds to a different location in the
s-plane, as shown by the s-plane diagram in Fig. 32-4. The impulse response
is probed by multiplying it with these waveforms, and then integrating the
result from t = -~ to +«. Thisaction is shown in the right column. Our goal
is to find combinations of o and w that exactly cancel the impulse response
being investigated. This cancellation can occur in two forms: the area under
the curve can be either zero, or just barely infinite. All other results are
uninteresting and can be ignored. Locations in the s-plane that produce a zero
cancellation are called zer os of the system. Likewise, locations that produce
the "just barely infinite" type of cancellation are called poles. Poles and zeros
are analogous to the mountains and valleys in our train story, representing the
terrain "around" the frequency response.

To start, consider what happens when the probing waveform decreases in
amplitude as time advances, as shown in (a). This will occur whenever
0>0 (the right half of the s-plane). Since both the impulse response and
the probe becomes smaller with increasing time, the product of the two will
also have this same characteristic. When the product of the two waveforms
is integrated from negative to positive infinity, the result will be some
number that is not especially interesting. In particular, a decreasing probe

s-plane diagram o

Pole-zero example. The notch filter hastwo E X m 0 ®

poles (represented by x) and two zeros
(represented by o). This s-plane diagram
shows the five locations we will "probe" in

this example to analyze this system. (Figure 0

30-5 is a continuation of this example).
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Probing the impulse response. The Laplace transform can be viewed as probing the system's impul se response with
various exponentially decaying sinusoids. Probing waveforms that produce a cancellation are called poles and zeros.
This illustration shows five probing waveforms (left column) being applied to the impulse response of a notch filter
(center column). The locations in the s-plane that correspond to these five waveforms are shown in Fig. 32-4.
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cannot cancel a decreasing impulse response. This means that a stable system
will not have any poles with ¢ > 0. In other words, all of the polesin a stable
system are confined to the left half of the s-plane. In fact, poles in the right
half of the s-place show that the system is unstable (i.e., an impulse response
that increases with time).

Figure (b) shows one of the special cases we have been looking for. When this
waveform is multiplied by the impulse response, the resulting integral has a
value of zero. This occurs because the area above the x-axis (from the delta
function) is exactly equal to the area below (from the rectified sinusoid). The
values for o and w that produce this type of cancellation are called a zero of
the system. As shown in the s-plane diagram of Fig. 32-4, zeros are indicated
by small circles (0).

Figure (c) shows the next probe we can try. Here we are using a sinusoid that
exponentially increases with time, but at a rate slower than the impulse
response is decreasing with time. This results in the product of the two
waveforms also decreasing as time advances. Asin (@), this makes the integral
of the product some uninteresting real number. The important point being that
no type of exact cancellation occurs.

Jumping out of order, look at (€), a probing waveform that increases at a
faster rate than the impulse response decays. When multiplied, the resulting
signal increases in amplitude as time advances. This means that the area under
the curve becomes larger with increasing time, and the total area from
t= -« to+« is not defined. In mathematical jargon, the integral does not
converge. In other words, not all areas of the s-plane have a defined value.
The portion of the s-plane where the integral is defined is called the r egion-of-
convergence. In some mathematical techniques it is important to know what
portions of the s-plane are within the region-of-convergence. However, this
information is not needed for the applications in this book. Only the exact
cancellations are of interest for this discussion.

In (d), the probing waveform increases at exactly the same rate that the impulse
response decreases. This makes the product of the two waveforms have a
constant amplitude. In other words, this is the dividing line between (c) and
(e), resulting in atotal areathat is just barely undefined (if the mathematicians
will forgive this loose description). In more exact terms, this point is on the
borderline of the region of convergence. As mentioned, values for o and w that
produce this type of exact cancellation are called poles of the system. Poles
are indicated in the s-plane by crosses (x).

Analysis of Electric Circuits

We have introduced the Laplace transform in graphical terms, describing what
the waveforms look like and how they are manipulated. This is the most
intuitive way of understanding the approach, but is very different from how it
is actually used. The Laplace transform is inherently a mathematical technique;
it is used by writing and manipulating equations. The problem is, it is easy to
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become lost in the abstract nature of the complex algebra and loose all
connection to the real world. Your task is to merge the two views together.
The Laplace transform is the primary method for analyzing electric circuits.
Keep in mind that any system governed by differential equations can be
handled the same way; electric circuits are just an example we are using.

The brute force approach is to solve the differential equations controlling the
system, providing the system's impulse response. The impulse response can
then be converted into the ss-domain via Eq. 32-1. Fortunately, thereis a better
way: transform each of the individual components into the s-domain, and then
account for how they interact. This is very similar to the phasor transform
presented in Chapter 30, where resistors, inductors and capacitors are
represented by R, joL, and 1/jwC, respectively. In the Laplace transform,
resistors, inductors and capacitors become the complex variables: R, sL, and
1/sC. Notice that the phasor transform is a subset of the Laplace transform.
That is, when ¢ is set to zero in s= o+jw, R becomes R, sL becomes jwL,
and 1/sC becomes 1/jwC.

Just as in Chapter 30, we will treat each of the three components as an
individual system, with the current waveform being the input signal, and the
voltage waveform being the output signal. When we say that resistors,
inductors and capacitors become R, sL , and 1/sC in the s-domain, this refers
to the output divided by the input. In other words, the Laplace transform of the
voltage waveform divided by the Laplace transform of the current waveform
is equal to these expressions.

As an example of this, imagine we force the current through an inductor to be
a unity amplitude cosine wave with a frequency given by w,. The resulting
voltage waveform across the inductor can be found by solving the differential
eguation that governs its operation:

o, diy oo d _ :
v(it) = L o i(t) L o cos(w,t) a,L sn(w,t)

If we start the current waveform at t = 0, the voltage waveform will also start
at this same time (i.e., i(t) = 0 and v(t) = O for t<0). These voltage and
current waveforms are converted into the s-domain by Eq. 32-1:

- &)
1(s) = fcos(mot)e’Stdt = 2—0
0 Wy + §°

” _ o w,Ls

V(s = w,Lsn(w,t)esdt = ———
0 0 >

0 W + 87
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To complete this example, we will divide the s-domain voltage by the s-domain
current, just as if we were using Ohm'slaw (R= V/1):

w,Ls
2
V(s _ Wy + §° -y
1(9) W,
2 2
Wy + S

We find that the s-domain representation of the voltage across the inductor,
divided by the s-domain representation of the current through the inductor, is
equal to sL. Thisis always the case, regardless of the current waveform we
start with. In asimilar way, the ratio of ss-domain voltage to s-domain current
is always equal to R for resistors, and 1/sC for capacitors.

Figure 32-6 shows an example circuit we will analyze with the Laplace
transform, the RLC notch filter discussed in Chapter 30. Since this analysis
is the same for all electric circuits, we will outline it in steps.

Sep 1. Transform each of the components into the s-domain. In other words,
replace the value of each resistor with R, each inductor with sL, and each
capacitor with 1/sC. Thisisshown in Fig. 32-6.

Sep 2: Find H(s), the output divided by the input. As described in Chapter
30, thisis done by treating each of the components as if they obey Ohm's law,
with the "resistances"' given by: R, sL, and 1/sC. This alows us to use the
standard equations for resistors in series, resistors in parallel, voltage dividers,
etc. Treating the RLC circuit in this example as a voltage divider (just asin
Chapter 30), H(s) is found:

i} _ Ls?+ 1/C
S Ls?+ Rs+ 1/C

As you recall from Fourier analysis, the frequency spectrum of the output
signal divided by the frequency spectrum of the input signal is equal to the
system's frequency response, given the symbol, H(w). The above equation is
an extension of thisinto the ssdomain. The signal, H(s), is called the system's
transfer function, and is equal to the s-domain representation of the output
signal divided by the s-domain representation of the input signal. Further, H(s)
is equal to the Laplace transform of the impulse response, just the same as
H(w) is equal to the Fourier transform of the impulse response.
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Vin

FIGURE 32-6

Notch filter analysis in the s-domain. The Vout
first step in this procedure is to replace the

resistor, inductor & capacitor values with 1/sC

— >
their s-domain equivalents.
sL

So far, thisis identical to the techniques of the last chapter, except for using
sinstead of jw. The difference between the two methods is what happens from
this point on. This is as far as we can go with jo. We might graph the
frequency response, or examining it in some other way; however, this is a
mathematical dead end. In comparison, the interesting aspects of the Laplace
transform have just begun. Finding H(s) is the key to Laplace analysis;
however, it must be expressed in a particular form to be useful. This requires
the algebraic manipulation of the next two steps.

Sep 3: Arrange H(s) to be one polynomial over another. This makes the
transfer function written as:

2
EQUATION 32-2 H(g - 25 * bs+c
Transfer function in polynomial form. 2
as“+bs+c

It is always possible to express the transfer function in this form if the
system is controlled by differential equations. For example, the rectangular
pulse shown in Fig. 32-3 is not the solution to a differential equation and its
Laplace transform cannot be written in thisway. In comparison, any electric
circuit composed of resistors, capacitors, and inductors can be written in this
form. For the RLC notch filter used in this example, the algebra shown in step
2 has already placed the transfer function in the correct form, that is:

2 2
H(S):as +bs+c _ Lsc+ 1/C

as’+ bs+c Ls?+ Rs+ 1/C

wheree a=L,b=0,c=1C; anda=L, b= R ¢c=1/C

Sep 4: Factor the numerator and denominator polynomials. That is, break
the numerator and denominator polynomials into components that each contain
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asingle s. When the components are multiplied together, they must equal the
original numerator and denominator. In other words, the equation is placed into
the form:

The factored s-domain. This form H (S) _ (S B Zl) (S B 22) (S B 23)"'

allows the s-domain to be expressed as

poles and zeros.

 (5-p)(5-Py)(S-Py-

The roots of the numerator, z,, z, z, -, are the zer os of the equation, while the
roots of the denominator, p,, p,, p, -, ae the poles. These are the same zeros
and poles we encountered earlier in this chapter, and we will discuss how they
are used in the next section.

Factoring an s-domain expression is straightforward if the numerator and
denominator are second-order polynomials, or less. In other words, we can
easily handle the terms: s and s?2, but not: s3, s* s° ... Thisis because the
roots of a second-order polynomial, ax? + bx + ¢, can be found by using the
quadratic equation: x = -b +y/b? - 4ac / 2a. With this method, the transfer
function of the example notch filter is factored into:

(s-z)(s-z)

H(s) =
(S - pl) (S - pz)
where:
7R+\/R274L/C
4 = J/‘/E Py = 2L
fRf\/R274L/C
Z, = 71/‘/E P, = 2L

As in this example, a second-order system has a maximum of two zeros and
two poles. The number of poles in a system is equal to the number of
independent energy storing components. For instance, inductors and capacitors
store energy, while resistors do not. The number of zeros will be equal to, or
less than, the number of poles.

Polynomials greater than second order cannot generally be factored using
algebra, requiring more complicated numerical methods. As an alternative,
circuits can be constructed as a cascade of second-order stages. A good
example is the family of analog filters presented in Chapter 3. For instance,
an eight pole filter is designed by cascading four stages of two poles each. The
important point is that this multistage approach is used to overcome limitations
in the mathematics, not limitations in the electronics.
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To make this less abstract, we will use actual component values for the notch
filter we just analyzed: R=220Q, L = 54 yH, C = 470pF. Plugging these
values into the above equations, places the poles and zeros at:

Z
Z,

0 + j6.277x10°
0 - j6.277x10°

Py
P2

-2.037x10° + j 5.937x10°
-2.037x10° - j 5.937x10°

These pole and zero locations are shown in Fig. 32-7. Each zero is
represented by a circle, while each pole is represented by a cross. This is
called a pole-zero diagram, and is the most common way that s-domain data
are displayed. Figure 32-7 also shows a topographical display of the s-
plane. For simplicity, only the magnitude is shown, but don't forget that
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there is a corresponding phase. Just as mountains and valleys determine the
shape of the surface of the earth, the poles and zeros determine the shape of the
s-plane. Unlike mountains and valleys, every pole and zero is exactly the same
shape and size as every other pole and zero. The only unique characteristic a
pole or zero has is its location. Poles and zeros are important because they
provide a concise representation of the value at any point in the s-plane. That
is, we can completely describe the characteristics of the system using only
a few parameters. In the case of the RLC notch filter, we only need to specify
four complex parameters to represent the system: z,, z,, p,, p, (each consisting
of areal and an imaginary part).

To better understand poles and zeros, imagine an ant crawling around the s-
plane. At any particular location the ant happens to be (i.e., some value of s),
there is a corresponding value of the transfer function, H(s). Thisvalue is a
complex number that can be expressed as the magnitude & phase, or as the
real & imaginary parts. Now, let the ant carry us to one of the zeros in the s-
plane. The value we measure for the real and imaginary parts will be zero at
this location. This can be understood by examining the mathematical
equation for H(s) in Eqg. 32-3. If the location, s, is equal to any of the zeros,
one of the terms in the numerator will be zero. This makes the entire expression
egual to zero, regardless of the other values.

Next, our ant journey takes us to one of the poles, where we again measure the
value of the real and imaginary parts of H(s). The measured value becomes
larger and larger as we come close to the exact location of the pole (hence the
name). This can also be understood from Eq. 32-3. If the location, s, is equal
to any of the p's, the denominator will be equal to zero, and the division by
zero makes the entire expression infinity large.

Having explored the unique locations, our ant journey now moves randomly
throughout the s-plane. The value of H(s) at each location depends entirely on
the positioning of the poles and the zeros, because there are no other types of
features allowed in this strange terrain. If we are near a pole, the value will
be large; if we are near a zero, the value will be small.

Equation 32-3 also describes how multiple poles and zeros interact to form the
s-domain signal. Remember, subtracting two complex numbers provides the
distance between them in the complex plane. For example, (s- z) is the
distance between the arbitrary location, s, and the zero located at z..
Therefore, Eq. 32-3 specifies that the value at each location, s, is equal to the
distance to all of the zeros multiplied, divided by the distance to all of the
poles multiplied.

This brings us to the heart of this chapter: how the location of the poles &
zeros provides a deeper understanding of the system's frequency response.
The frequency response is equal to the values of H(s) along the imaginary
axis, signified by the dark line in the topographical plot of Fig. 32-7.
Imagine our ant starting at the origin and crawling along this path. Near
the origin, the distance to the zeros is approximately equal to the distance
to the poles. This makes the numerator and denominator in Eq. 32-3
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Strategy for using the Laplace transform. The phasor transform presented in Chapter 30 (the method using
R, joL, & -j/oC) alows the frequency response to be directly calculated from the parameters of the
physical system. In comparison, the Laplace transform cal culates an s-domain representation from the
physical system, usually displayed in the form of apole-zero diagram. Inturn, the frequency response can
be obtained from the s-domain by evaluating the transfer function along the imaginary axis. While both
methods provide the same end result, the intermediate step of the s-domain providesinsight into why the
frequency response behaves asit does.

cancel, providing a unity frequency response at low frequencies. The situation
doesn't change significantly until the ant moves near the pole and zero location.
When approaching the zero, the value of H(s) drops suddenly, becoming zero
when the ant is upon the zero. As the ant moves past the pole and zero pair,
the value of H(s) again returnsto unity. Using thistype of visualization, it can
be seen that the width of the notch depends on the distance between the pole
and zero.

Figure 32-8 summarizes how the Laplace transform is used. We start with a
physical system, such as an electric circuit. |If we desire, the phasor transform
can directly provide the frequency response of the system, as described in
Chapter 30. An alternative is to take the Laplace transform using the four step
method previously outlined. This results in a mathematical expression for the
transfer function, H(s), which can be represented in a pole-zero diagram.
The frequency response can then be found by evaluating the transfer
function along the imaginary axis, that is, by replacing each s with jw.
While both methods provide the same result, the intermediate pole-zero
diagram provides an understanding of why the system behaves as it does,
and how it can be changed.
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Filter Design in the s-Domain

The most powerful application of the Laplace transform is the design of
systems directly in the ss=domain. This involves two steps: First, the s-
domain is designed by specifying the number and location of the poles and
zeros. Thisis a pure mathematical problem, with the goal of obtaining the
best frequency response. In the second step, an electronic circuit is derived
that provides this s-domain representation. This is something of an art,
since there are many circuit configurations that have a given pole-zero
diagram.

As previously mentioned, step 4 of the Laplace transform method is very
difficult if the system contains more than two poles or two zeros. A
common solution is to implement multiple poles and zeros in successive
stages. For example, a 6 pole filter is implemented as three successive
stages, with each stage containing up to two poles and two zeros. Since
each of these stages can be represented in the s-domain by a quadratic
numerator divided by a quadratic denominator, this approach is called
designing with biquads.

Figure 32-9 shows a common biquad circuit, the one used in the filter
design method of Chapter 3. This is called the Sallen-Key circuit, after
R.P. Sallen and E.L. Key, authors of a paper that described this technique
in the mid 1950s. While there are several variations, the most common
circuit uses two resistors of equal value, two capacitors of equal value, and
an amplifier with an amplification of between 1 and 3. Although not
available to Sallen and Key, the amplifiers can now be made with low-cost
op amps with appropriate feedback resistors. Going through the four step
circuit analysis procedure, the location of this circuit's two poles can be
related to the component values:

5. A3

EQUATION 32-4

Sallen-Key pole locations. These 2RC

equations relate the pole position, »

and o, to the amplifier gain, A, the f 2

resistor, R, and capacitor, C. w = +y-A“+6A-5
2RC

These equations show that the two poles always lie somewhere on a circle of
radius. 1/RC. The exact position along the circle depends on the gain of the
amplifier. Asshown in (a), an amplification of 1 places both of the poles on
the real axis. The frequency response of this configuration is a low-pass filter
with a relatively smooth transition between the passband and stopband. The
-3dB (0.707) cutoff frequency of this circuit, denoted by w,, is where the circle
intersects the imaginary axis, i.e., w, = 1/RC.
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As the amplification is increased, the poles move along the circle, with a
corresponding change in the frequency response. As shown in (b), an
amplification of 1.586 places the poles at 45 degree angles, resulting in the
frequency response having a sharper transition. Increasing the amplification
further moves the poles even closer to the imaginary axis, resulting in the
frequency response showing a peaked curve. This condition is illustrated in (c),
where the amplification is set at 2.5. The amplitude of the peak continues to
grow as the amplification is increased, until a gain of 3 isreached. As shown
in (d), thisis a specia case that places the poles directly on the imaginary axis.
The corresponding frequency response now has an infinity large value at the
peak. In practical terms, this means the circuit has turned into an oscillator.
Increasing the gain further pushes the poles deeper into the right half of the s-
plane. As mentioned before, this correspond to the system being unstable
(spontaneous oscillation).

Using the Sallen-Key circuit as a building block, a wide variety of filter types
can be constructed. For example, a low-pass Butterworth filter is designed
by placing a selected number of poles evenly around the left-half of the circle,
as shown in Fig. 32-10. Each two poles in this configuration requires one
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FIGURE 32-10

The Butterworth s-plane. The low-pass
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Sallen-Key stage. As described in Chapter 3, the Butterworth filter is
maximally flat, that is, it has the sharpest transition between the passband and
stopband without peaking in the frequency response. The more poles used, the
faster the transition. Since al the poles in the Butterworth filter lie on the
same circle, all the cascaded stages use the same values for R and C. The only
thing different between the stages is the amplification. Why does this circular
pattern of poles provide the optimally flat response? Don't look for an obvious
or intuitive answer to this question; it just falls out of the mathematics.

Figure 32-11 shows how the pole positions of the Butterworth filter can be
modified to produce the Chebyshev filter. Asdiscussed in Chapter 3, the
Chebyshev filter achieves a sharper transition than the Butterworth at the
expense of ripple being allowed into the passband. In the s-domain, this
corresponds to the circle of poles being flattened into an ellipse. The more
flattened the ellipse, the more ripple in the passband, and the sharper the
transition. When formed from a cascade of Sallen-Key stages, this requires
different values of resistors and capacitors in each stage.

Figure 32-11 also shows the next level of sophistication in filter design
strategy: the elliptic filter. The elliptic filter achieves the sharpest possible
transition by allowing ripple in both the passband and the stopband. In the s-
domain, this corresponds to placing zeros directly on the real axis, with the
first one near the cutoff frequency. Elliptic filters come in several varieties and
are significantly more difficult to design than Butterworth and Chebyshev
configurations. This is because the poles and zeros of the elliptic filter do not
lie in a simple geometric pattern, but in a mathematical arrangement involving
elliptic functions and integrals (hence the name).

Twle] o [2pde] o

Butterworth filter is created by placing X

poles equally around the left-half of a
circle. The more poles used in the filter,

the faster the roll-off.

Gede| jo (epde| (o
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Since each biquad produces two poles, even order filters (2 pole, 4 pole, 6
pole, etc.) can be constructed by cascading biquad stages. However, odd
order filters (1 pole, 3 pole, 5 pole, etc.) require something that the biquad
cannot provide: a single pole on the imaginary axis. This turns out to be
nothing more than a simple RC circuit added to the cascade. For example, a
9 pole filter can be constructed from 5 stages: 4 Sallen-Key biquads, plus one
stage consisting of a single capacitor and resistor.

These classic pole-zero patterns are for low-pass filters; however, they can be
modified for other frequency responses. Thisis done by designing a low-pass
filter, and then performing a mathematical transformation in the s-domain. We
start by calculating the low-pass filter pole locations, and then writing the
transfer function, H(s), in the form of Eq. 32-3. The transfer function of the
corresponding high-pass filter is found by replacing each "s" with "1/s", and
then rearranging the expression to again be in the pole-zero form of Eq. 32-3.
This defines new pole and zero locations that implement the high-pass filter.
More complicated s-domain transforms can create band-pass and band-reject
filters from an initial low-pass design. This type of mathematical manipulation
in the ssdomain is the central theme of filter design, and entire books are
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devoted to the subject. Analog filter design is 90% mathematics, and only
10% electronics.

Fortunately, the design of high-pass filters using Sallen-Key stages doesn't
require this mathematical manipulation. The "1/s" for "s" replacement in the
s-domain corresponds to swapping the resistors and capacitors in the circuit.
In the s-plane, this swap places the poles at a new position, and adds two zeros
directly at the origin. This resultsin the frequency response having a value of
zero at DC (zero frequency), just as you would expect for a high-pass filter.
This brings the Sallen-Key circuit to its full potential: the implementation of
two poles and two zeros.



CHAPTER

31

The Complex Fourier Transform

Although complex numbers are fundamentally disconnected from our reality, they can be used to
solve science and engineering problems in two ways. First, the parameters from a real world
problem can be substituted into a complex form, as presented in the last chapter. The second
method is much more elegant and powerful, a way of making the complex numbers
mathematically equivalent to the physical problem. This approach leads to the complex Fourier
transform, a more sophisticated version of the real Fourier transform discussed in Chapter 8.
The complex Fourier transform is important in itself, but also as a stepping stone to more
powerful complex techniques, such as the Laplace and z-transforms. These complex transforms
are the foundation of theoretical DSP.

The Real DFT

All four members of the Fourier transform family (DFT, DTFT, Fourier
Transform & Fourier Series) can be carried out with either real numbers or
complex numbers. Since DSP is mainly concerned with the DFT, we will use
it as an example. Before jumping into the complex math, let's review the real
DFT with a special emphasis on things that are awkward with the mathematics.
In Chapter 8 we defined the real version of the Discrete Fourier Transform
according to the equations:

EQUATION 31-1

- . N-1
Therea DFT. Thisistheforward transform, 2
calculating the frequency domain from the ReX[k] = — Z X[n] cos(2nkn/N)
time domain. In spite of using the names: real N n0o

part and imaginary part, these equations

only involve ordinary numbers. The

frequency index, k, runsfrom 0 to N/2. These

are the same equations given in Eq. 8-4, ImX[k]
except that the 2/N term has been included in

the forward transform.

o N1
—= Y x[n] sn(2nkn/N)
N n=0

In words, an N sample time domain signal, x[n], is decomposed into a set
of N/2+1 cosine waves, and N/2 +1 sine waves, with frequencies given by the

567
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index, k. The amplitudes of the cosine waves are contained in ReX[k], while
the amplitudes of the sine waves are contained in Im X[k]. These equations
operate by correlating the respective cosine or sine wave with the time domain
signal. In spite of using the names: real part and imaginary part, there are no
complex numbers in these equations. There isn't aj anywhere in sight! We
have also included the normalization factor, 2/N in these equations.
Remember, this can be placed in front of either the synthesis or analysis
eguation, or be handled as a separate step (as described by Eq. 8-3). These
eguations should be very familiar from previous chapters. If they aren't, go
back and brush up on these concepts before continuing. 1f you don't understand
the real DFT, you will never be able to understand the complex DFT.

Even though the real DFT uses only real numbers, substitution allows the
frequency domain to be represented using complex numbers. As suggested by
the names of the arrays, ReX[k] becomes the real part of the complex
frequency spectrum, and ImX[k] becomes the imaginary part. In other words,
we place aj with each value in the imaginary part, and add the result to the
real part. However, do not make the mistake of thinking that this is the
"complex DFT." This is nothing more than the real DFT with complex
substitution.

While the real DFT is adequate for many applications in science and
engineering, it is mathematically awkward in three respects. First, it can only
take advantage of complex numbers through the use of substitution. This
makes mathematicians uncomfortable; they want to say: "this equals that," not
simply: "this represents that." For instance, imagine we are given the
mathematical statement: A equals B. We immediately know countless
consequences. 5A=5B, 1+A=1+B, A/x =B/x, etc. Now suppose we are
given the statement: A represents B. Without additional information, we know
absolutely nothing! When things are equal, we have access to four-thousand
years of mathematics. When things only represent each other, we must start
from scratch with new definitions. For example, when sinusoids are
represented by complex numbers, we allow addition and subtraction, but
prohibit multiplication and division.

The second thing handled poorly by the real Fourier transform isthe negative
frequency portion of the spectrum. Asyou recall from Chapter 10, sine and
cosine waves can be described as having a positive frequency or a negative
frequency. Since the two views are identical, the real Fourier transform
ignores the negative frequencies. However, there are applications where the
negative frequencies are important. This occurs when negative frequency
components are forced to move into the positive frequency portion of the
spectrum. The ghosts take human form, so to speak. For instance, this is what
happens in aliasing, circular convolution, and amplitude modulation. Since the
real Fourier transform doesn't use negative frequencies, its ability to deal with
these situations is very limited.

Our third complaint is the special handing of ReX[0] and ReX[N/2], the
first and last points in the frequency spectrum. Suppose we start with an N
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point signal, x[n]. Taking the DFT provides the frequency spectrum contained
in ReX[k] and ImX[k], where k runs from 0 to N/2. However, these are not
the amplitudes needed to reconstruct the time domain waveform; samples
ReX[0] and ReX[N/2] must first be divided by two. (See Eg. 8-3 to refresh
your memory). This is easily carried out in computer programs, but
inconvenient to deal with in equations.

The complex Fourier transform is an elegant solution to these problems. It is
natural for complex numbers and negative frequencies to go hand-in-hand.
Let's see how it works.

Mathematical Equivalence

EQUATION 31-2
Euler'srelation.

EQUATION 31-3
Euler'srelation for
sine & cosine.

Our first step is to show how sine and cosine waves can be written in an
eguation with complex numbers. The key to thisis Euler's relation, presented
in the last chapter:

elX = cos(x) + jsn(x)

At first glance, this doesn't appear to be much help; one complex expression is
equal to another complex expression. Nevertheless, a little algebra can
rearrange the relation into two other forms:

X, gix X _ g-ix
e'”+e sn(x) - e’ -e

Cos(x) =
® 2 2

This result is extremely important, we have developed a way of writing
eguations between complex numbers and ordinary sinusoids. Although Eq. 31-
3 isthe standard form of the identity, it will be more useful for this discussion
if we change a few terms around:

EQUATION 31-4 cos(wt) = el Zelot

Sinusoids as complex numbers. Using 2 2

complex humbers, cosine and sine waves

can be written as the sum of a positive ] ]

and a negative frequency. sn(wt) = 1 i elCot _ 1 i glwt
2 2

Each expression is the sum of two exponentials: one containing a positive
frequency (w), and the other containing a negative frequency (-»). In other
words, when sine and cosine waves are written as complex numbers, the
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negative portion of the frequency spectrum is automatically included. The
positive and negative frequencies are treated with an equal status; it requires
one-half of each to form a complete waveform.

The Complex DFT

The forward complex DFT, written in polar form, is given by:

EQUATION 31-5

The forward complex DFT. Both the

time domain, x[n], and the frequency 1 -1 .
domain, X[K|, are arrays of complex X[k] = — Z x[n] e J2mkn/N
numbers, with k and n running from 0 N .

to N-1. This equation isin polar form,

the most common for DSP.

Alternatively, Euler's relation can be used to rewrite the forward transform in
rectangular form:

EQUATION 31-6 1 Nt
Theforward complex DFT X[K] = ﬁ Z [n](cos(ann/N) - jsin(2nkn/N))

(rectangular form).

To start, compare this equation of the complex Fourier transform with the
equation of thereal Fourier transform, Eq. 31-1. At first glance, they appear
to be identical, with only small amount of algebra being required to turn Eq.
31-6 into Eq. 31-1. However, thisis very misleading; the differences between
these two equations are very subtle and easy to overlook, but tremendously
important. Let's go through the differences in detail.

First, the real Fourier transform converts areal time domain signal, x[n], into
two real frequency domain signals, ReX[k] & ImX[k]. By using complex
substitution, the frequency domain can be represented by a single complex
array, X[k]. In the complex Fourier transform, both x[n] & X[k] are arrays
of complex numbers. A practical note: Even though the time domain is
complex, there is nothing that requires us to use the imaginary part. Suppose
we want to process a real signal, such as a series of voltage measurements
taken over time. This group of data becomes the real part of the time domain
signal, while the imaginary part is composed of zeros.

Second, the real Fourier transform only deals with positive frequencies.
That is, the frequency domain index, k, only runs from 0 to N/2. In
comparison, the complex Fourier transform includes both positive and
negative frequencies. This means k runs from 0 to N-1. The frequencies
between 0 and N/2 are positive, while the frequencies between N/2 and N-1
are negative. Remember, the frequency spectrum of a discrete signal is
periodic, making the negative frequencies between N/2 and N-1 the same as
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between -N/2 and 0. The samples at 0 and N/2 straddle the line between
positive and negative. If you need to refresh your memory on this, look
back at Chapters 10 and 12.

Third, in the real Fourier transform with substitution, aj was added to the sine
wave terms, alowing the frequency spectrum to be represented by complex
numbers. To convert back to ordinary sine and cosine waves, we can simply
drop thej. Thisis the sloppiness that comes when one thing only represents
another thing. In comparison, the complex DFT, Eq. 31-5, is a formal
mathematical equation with j being an integral part. In this view, we cannot
arbitrary add or remove a j any more than we can add or remove any other
variable in the equation.

Forth, the real Fourier transform has a scaling factor of two in front, while the
complex Fourier transform does not. Say we take the real DFT of a cosine
wave with an amplitude of one. The spectral value corresponding to the cosine
wave is also one. Now, let's repeat the process using the complex DFT. In
this case, the cosine wave corresponds to two spectral values, a positive and a
negative frequency. Both these frequencies have a value of ¥2. In other words,
a positive frequency with an amplitude of %, combines with a negative
frequency with an amplitude of ¥, producing a cosine wave with an amplitude
of one.

Fifth, the real Fourier transform requires special handling of two frequency
domain samples: ReX[0] & ReX[N/2], but the complex Fourier transform does
not. Suppose we start with atime domain signal, and take the DFT to find the
frequency domain signal. To reverse the process, we take the Inverse DFT of
the frequency domain signal, reconstructing the original time domain signal.
However, there is scaling required to make the reconstructed signal be identical
to the original signal. For the complex Fourier transform, a factor of 1/N must
be introduced somewhere along the way. This can be tacked-on to the forward
transform, the inverse transform, or kept as a separate step between the two.
For the real Fourier transform, an additional factor of two is required (2/N), as
described above. However, the real Fourier transform also requires an
additional scaling step: ReX[0] and ReX[N/2] must be divided by two
somewhere along the way. Put in other words, a scaling factor of 1/N is used
with these two samples, while 2/N is used for the remainder of the spectrum.
As previously stated, this awkward step is one of our complaints about the real
Fourier transform.

Why are the real and complex DFTs different in how these two points are
handled? To answer this, remember that a cosine (or sine) wave in the time
domain becomes split between a positive and a negative frequency in the
complex DFT's spectrum. However, there are two exceptions to this, the
spectral values at 0 and N/2. These correspond to zero frequency (DC) and
the Nyquist frequency (one-half the sampling rate). Since these points
straddle the positive and negative portions of the spectrum, they do not have
a matching point. Because they are not combined with another value, they
inherently have only one-half the contribution to the time domain as the
other frequencies.
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Figure 31-1 illustrates the complex DFT's frequency spectrum. This figure
assumes the time domain is entirely real, that is, itsimaginary part is zero.
We will discuss the idea of imaginary time domain signals shortly. There
are two common ways of displaying a complex frequency spectrum. As
shown here, zero frequency can be placed in the center, with positive
frequencies to the right and negative frequencies to the left. Thisis the best
way to think about the complete spectrum, and is the only way that an
aperiodic spectrum can be displayed.
The problem is that the spectrum of a discrete signal is periodic (such as with
the DFT and the DTFT). This means that everything between -0.5 and 0.5
repeats itself an infinite number of times to the left and to the right. In this
case, the spectrum between 0 and 1.0 contains the same information as from -
0.5 to 0.5. When graphs are made, such as Fig. 31-1, the -0.5 to 0.5
convention is usually used. However, many eguations and programs use the 0
to 1.0 form. For instance, in Egs. 31-5 and 31-6 the frequency index, Kk, runs
from 0 to N-1 (coinciding with 0 to 1.0). However, we could write it to run
from -N/2 to N/2-1 (coinciding with -0.5 to 0.5), if we desired.
Using the spectrum in Fig. 31-1 as a guide, we can examine how the inverse
complex DFT reconstructs the time domain signal. The inverse complex DFT,
written in polar form, is given by:
EQUATION 31-7 N-1
The inverse complex DFT. Thisis _ j2mkn/N
matching equation to the forward X[n] - kzO: X[k] e

complex DFT in Eq. 31-5.
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Using Euler's relation, this can be written in rectangular form as:

N-1

x[n] = Z ReX[k] (cos(Zn kn/N) + jsn(2rn kn/N))
EQUATION 31-8 k=0
The inverse complex DFT.
Thisis Eq. 31-7 rewritten to
show how each valuein the N-1 _ )
frequency spectrum affects - ImX[k] | Sn(2rkn/N) - j cos(2nkn/N)
the time domain. K=0

The compact form of Eq. 31-7 is how the inverse DFT is usually written,
although the expanded version in Eq. 31-9 can be easier to understand. In
words, each value in the real part of the frequency domain contributes a real
cosine wave and an imaginary sine wave to the time domain. Likewise, each
value in the imaginary part of the frequency domain contributes a real sine
wave and an imaginary cosine wave. The time domain is found by adding all
these real and imaginary sinusoids. The important concept is that each value
in the frequency domain produces both a real sinusoid and an imaginary
sinusoid in the time domain.

For example, imagine we want to reconstruct a unity amplitude cosine wave at
a frequency of 2nk/N. This requires a positive frequency and a negative
frequency, both from the real part of the frequency spectrum. The two square
markers in Fig. 31-1 are an example of this, with the frequency set at:
k/N = 0.23. The positive frequency at 0.23 (labeled 1 in Fig. 31-1) contributes
a cosine wave and an imaginary sine wave to the time domain:

Y% cos(210.23n) + %) €n(2n0.23n)

Likewise, the negative frequency at -0.23 (labeled 2 in Fig. 31-1) also
contributes a cosine and an imaginary sine wave to the time domain:

Y2cos(2n(-0.23)n) + Y2j9n(2n(-0.23)n)

The negative sign within the cosine and sine terms can be eliminated by the
relations; cos(-x) = cos(x) and sin(-x) = -sin(x). This allows the negative
frequency's contribution to be rewritten:

Y% cos(210.23n) - %j€n(2n0.23n)
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Adding the contributions from the positive and the negative frequencies
reconstructs the time domain signal:

contribution from positive frequency — % c0s(210.23n) + %2j9n(2n0.23n)

contribution from negative frequency — %2 c0s(210.23n) - %2j€n(2n0.23n)

resultant time domain signal — cos(2n 0.23n)

In this same way, we can synthesize a sine wave in the time domain. In this
case, we need a positive and negative frequency from the imaginary part of the
frequency spectrum. This is shown by the round markers in Fig. 31-1. From
Eq. 31-8, these spectral values contribute a sine wave and an imaginary cosine
wave to the time domain. The imaginary cosine waves cancel, while the real
sine waves add:

contribution from positive frequency — -%49n(2r0.23n) - %:2j cos(2r0.23n)

contribution from negative frequency — -%49n(210.23n) + %2jcos(2r0.23n)

resultant time domain signal — - sn(2n0.23n)

Notice that a negative sine wave is generated, even though the positive
frequency had a value that was positive. This sign inversion is an inherent part
of the mathematics of the complex DFT. As you recall, this same sign
inversion is commonly used in the real DFT. That is, a positive value in the
imaginary part of the frequency spectrum corresponds to a negative sine wave.
Most authors include this sign inversion in the definition of the real Fourier
transform to make it consistent with its complex counterpart. The point is, this
sign inversion must be used in the complex Fourier transform, but is merely an
option in the real Fourier transform.

The symmetry of the complex Fourier transform is very important. As
illustrated in Fig. 31-1, areal time domain signal corresponds to a frequency
spectrum with an even real part, and an odd imaginary part. In other words,
the negative and positive frequencies have the same sign in the real part (such
as points 1 and 2 in Fig. 31-1), but opposite signs in the imaginary part (points
3 and 4).

This brings up another topic: the imaginary part of the time domain. Until now
we have assumed that the time domain is completely real, that is, the imaginary
part is zero. However, the complex Fourier transform does not require this.
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What is the physical meaning of an imaginary time domain signal? Usually,
thereisnone. Thisis just something allowed by the complex mathematics,
without a correspondence to the world we live in. However, there are
applications where it can be used or manipulated for a mathematical
purpose.

An example of thisis presented in Chapter 12. The imaginary part of the time
domain produces a frequency spectrum with an odd real part, and an even
imaginary part. Thisisjust the opposite of the spectrum produced by the real
part of the time domain (Fig. 31-1). When the time domain contains both a real
part and an imaginary part, the frequency spectrum is the sum of the two
spectra, had they been calculated individually. Chapter 12 describes how this
can be used to make the FFT algorithm calculate the frequency spectra of two
real signals at once. One signal is placed in the real part of the time domain,
while the other is place in the imaginary part. After the FFT calculation, the
spectra of the two signals are separated by an even/odd decomposition.

The Family of Fourier Transforms

Just as the DFT has areal and complex version, so do the other members of the
Fourier transform family. This produces the zoo of equations shown in Table
31-1. Rather than studying these equations individually, try to understand them
as awell organized and symmetrical group. The following comments describe
the organization of the Fourier transform family. It is detailed, repetitive, and
boring. Nevertheless, this is the background needed to understand theoretical
DSP. Study it well.

1. Four Fourier Transforms

A time domain signal can be either continuous or discrete, and it can be either
periodic or aperiodic. This defines four types of Fourier transforms. the
Discrete Fourier Transform (discrete, periodic), the Discrete Time
Fourier Transform (discrete, aperiodic), the Fourier Series (continuous,
periodic), and the Fourier Transform (continuous, aperiodic). Don't try to
understand the reasoning behind these names, there isn't any.

If asignal is discrete in one domain, it will be periodic in the other. Likewise,
if a signal is continuous in one domain, will be aperiodic in the other.
Continuous signals are represented by parenthesis, ( ), while discrete signals
are represented by brackets, [ ]. There is no notation to indicate if asignal is
periodic or aperiodic.

2. Real versus Complex

Each of these four transforms has a complex version and areal version. The
complex versions have a complex time domain signal and a complex frequency
domain signal. The real versions have areal time domain signal and two real
frequency domain signals. Both positive and negative frequencies are used in
the complex cases, while only positive frequencies are used for the real
transforms. The complex transforms are usually written in an exponential
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form; however, Euler's relation can be used to change them into a cosine and
sine form if needed.

3. Analysis and Synthesis

Each transform has an analysis equation (also called the forward transform)
and a synthesis equation (also called the inverse transform). The analysis
equations describe how to calculate each value in the frequency domain based
on al of the values in the time domain. The synthesis equations describe how
to calculate each value in the time domain based on all of the values in the
frequency domain.

4. Time Domain Notation

Continuous time domain signals are called x(t), while discrete time domain
signals are called x[ n]. For the complex transforms, these signals are complex.
For the real transforms, these signals are real. All of the time domain signals
extend from minus infinity to positive infinity. However, if the time domain is
periodic, we are only concerned with a single cycle, because the rest is
redundant. The variables, T and N, denote the periods of continuous and
discrete signals in the time domain, respectively.

5. Frequency Domain Notation

Continuous frequency domain signds are cdled X(w) if they are complex, and ReX(w)
& ImX(w) if they arereal. Discrete frequency domain signals are called X[ K]
if they are complex, and ReX[k] & ImX][Kk] if they are real. The complex
transforms have negative frequencies that extend from minus infinity to zero,
and positive frequencies that extend from zero to positive infinity. The real
transforms only use positive frequencies. |If the frequency domain is periodic,
we are only concerned with a single cycle, because the rest is redundant. For
continuous frequency domains, the independent variable, », makes one complete
period from -n to =. In the discrete case, we use the period where k runs from
O0toN-1

6. The Analysis Equations

The analysis equations operate by correlation, i.e., multiplying the time
domain signal by a sinusoid and integrating (continuous time domain) or
summing (discrete time domain) over the appropriate time domain section.
If the time domain signal is aperiodic, the appropriate section is from minus
infinity to positive infinity. If the time domain signal is periodic, the
appropriate section is over any one complete period. The equations shown
here are written with the integration (or summation) over the period: 0 to
T (or 0 to N-1). However, any other complete period would give identical
results, i.e., -Tto 0, -T/2 to T/2, etc.

7. The Synthesis Equations

The synthesis equations describe how an individual value in the time domain
is calculated from all the points in the frequency domain. This is done by
multiplying the frequency domain by a sinusoid, and integrating (continuous
frequency domain) or summing (discrete frequency domain) over the
appropriate frequency domain section. If the frequency domain is complex and
aperiodic, the appropriate section is negative infinity to positive infinity. If the
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frequency domain is complex and periodic, the appropriate section is over one
complete cycle, i.e.,, -n to = (continuous frequency domain), or 0 to N-1
(discrete frequency domain). If the frequency domain is real and aperiodic, the
appropriate section is zero to positive infinity, that is, only the positive
frequencies. Lastly, if the frequency domain is real and periodic, the
appropriate section is over the one-half cycle containing the positive
frequencies, either 0 to = (continuous frequency domain) or O to N/2 (discrete
frequency domain).

8. Scaling

To make the analysis and synthesis equations undo each other, a scaling factor
must be placed on one or the other equation. In Table 31-1, we have placed
the scaling factors with the analysis equations. In the complex case, these
scaling factors are: /N, 1/T, or 1/2=. Since the real transforms do not use
negative frequencies, the scaling factors are twice as large: 2/N, 2/T, or 1/x.
The real transforms also include a negative sign in the calculation of the
imaginary part of the frequency spectrum (an option used to make the rea
transforms more consistent with the complex transforms). Lastly, the synthesis
equations for the real DFT and the real Fourier Series have special scaling
instructions involving ReX(0) and ReX[N/2].

9. Variations
These equations may look different in other publications. Here are a few
variations to watch out for:

[ Using f instead of » by the relation: w = 2xf

[ Integrating over other periods, such as: -Tt0 0, -T/2to T/2,0or0to T

[ Moving all or part of the scaling factor to the synthesis equation

(1 Replacing the period with the fundamental frequency, f, = UT

[ Using other variable names, for example, » can become Q inthe DTFT,
and Re X[k] & ImXJ[k] can become g, & by in the Fourier Series

Why the Complex Fourier Transform is Used

It is painfully obvious from this chapter that the complex DFT is much more
complicated than the real DFT. Are the benefits of the complex DFT really
worth the effort to learn the intricate mathematics? The answer to this
guestion depends on who you are, and what you plan on using DSP for. A
basic premise of this book is that most practical DSP techniques can be
understood and used without resorting to complex transforms. If you are
learning DSP to assist in your non-DSP research or engineering, the
complex DFT is probably overkill.

Nevertheless, complex mathematics is the primary language of those that
specialize in DSP. If you do not understand this language, you cannot
communicate with professionals in the field. This includes the ability to
understand the DSP literature: books, papers, technical articles, etc. Why are
complex techniques so popular with the professional DSP crowd?
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Discrete Fourier Transform (DFT)

complex transform

real transform

synthesis N-1

x[n] _ Zx[k] el 2mkn/iN
k=0

analysis 1 -1 )
X[k] T Z [n]e—JZEkn/N

Time domain:
X[n] is complex, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
X[K] is complex, discrete and periodic
k runs over one period, from 0 to N-1
k = 0to N/2 are positive frequencies
k = N/2 to N-1 are negative frequencies

Discrete Time Fourier Transform (DTFT)

synthesis N/2
x[n] = Y ReX[K] cos(2nkn/N)
k=0

- ImX[k] sin(2rnkn/N)

analysis 2 -1
ReX[K] = N2 E x[n] cos(2nkn/N)
N-1
ImX[k] = —= Y} x[n] sin(2nkn/N)
n=0
Time domain:

X[n] isreal, discrete and periodic
n runs over one period, from 0 to N-1

Frequency domain:
Re X[k] isreal, discrete and periodic
Im X[k] isreal, discrete and periodic
k runs over one-half period, from 0 to N/2

Note: Before using the synthesis equation, the values
for Re X[0] and Re X[N/2] must be divided by two.

complex transform

real transform

synthesis 2n _
x[n] = f X(w) e/*" dw
0

analysis

X(w) = Ex[n] g ien

n=-o

Time domain:
x[n] is complex, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
X(w) iscomplex, continuous, and periodic
o runsover asingle period, from 0 to 2z
o = 0to & are positive frequencies
o = 7 to 2r are negative frequencies

synthesis

x[n] = }ReX(m) cos(wn)

- ImX (w) sin(wn) dw

analysis 1 +oo
ReX(w) = = Y x[n]cos(wn)
n=-o
1 & .
ImX(w) = —= Y x[n]sin(wn)
n=-o
Time domain:

x[n] isreal, discrete and aperiodic
n runs from negative to positive infinity

Frequency domain:
Re X(w) isreal, continuous and periodic
Im X(w) isreal, continuous and periodic
o runs over one-half period, from 0 to =

TABLE 31-1 The Fourier Transforms
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Fourier Series

complex transform

real transform

synthesis +oo )
X(t) _ Z X[k] el 2nkt/T
K= -
analysis 1 T
X[K] = = [x(t) e 12t Tqt
(k] Tof (t)
Time domain:

X(t) is complex, continuous and periodic
t runs over one period, from0to T

Frequency domain:
X[K] is complex, discrete, and aperiodic
k runs from negative to positive infinity
k > 0 are positive frequencies
k < 0 are negative frequencies

Fourier Transform

synthesis

X(t) = ijeX[k] cos(2nkt/T)
k=0

~ ImX[K] sin(2rkt/T)
analysis 2 T
ReX[K] = ?fx(t)cos(ant/T)dt
0
-
-2 .
ImX[K] = =fx(t)sm(2nkt/T)dt
T 0
Time domain:

X(t) isreal, continuous, and periodic
t runs over one period, from0to T

Frequency domain:
Re X[k] isreal, discrete and aperiodic
Im X[k] isreal, discrete and aperiodic
k runs from zero to positive infinity

Note: Before using the synthesis equation, the value for
Re X[0] must be divided by two.

complex transform

real transform

synthesis +oo

X(t) = fX(m) el dw

analysis +oo

X(w) = 2=1n [ e

Time domain:
X(t) is complex, continious and aperiodic
t runs from negative to positive infinity

Frequency domain:
X(w) is complex, continious, and aperiodic
o runs from negative to positive infinity
o > 0 are positive frequencies
o < 0 are negative frequencies

synthesis +oo

X(t) = f ReX (w) cos(wt)
0

- ImX(w) sin(wt)dt
analysis 1 +oo
ReX(w) = = f X (t) cos(wt) dt
T — o0
ImX(w) = ;fx(t)s'n(mt)dt
T — o0
Time domain:

X(t) isreal, continuous, and aperiodic
t runs from negative to positive infinity

Frequency domain:
Re X[w] isreal, continuous and aperiodic
Im X[w] isreal, continuous and aperiodic
o runs from zero to positive infinity

TABLE 31-1 The Fourier Transforms
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There are several reasons we have already mentioned: compact equations,
symmetry between the analysis and synthesis equations, symmetry between the
time and frequency domains, inclusion of negative frequencies, a stepping stone
to the Laplace and z-transforms, etc.

There is also a more philosophical reason we have not discussed, something
called truth. We started this chapter by listing several ways that the real
Fourier transform is awkward. When the complex Fourier transform was
introduced, the problems vanished. Wonderful, we said, the complex Fourier
transform has solved the difficulties.

While this is true, it does not give the complex Fourier transform its proper
due. Look at this situation this way. In spite of its abstract nature, the complex
Fourier transform properly describes how physical systems behave. When we
restrict the mathematics to be real numbers, problems arise. In other words,
these problems are not solved by the complex Fourier transform, they are
introduced by the real Fourier transform. In the world of mathematics, the
complex Fourier transform is a greater truth than the real Fourier transform.
This holds great appeal to mathematicians and academicians, a group that
strives to expand human knowledge, rather than simply solving a particular
problem at hand.



CHAPTER

30

Complex Numbers

Complex numbers are an extension of the ordinary numbers used in everyday math. They have
the unique property of representing and manipulating two variables as a single quantity. This fits
very naturally with Fourier analysis, where the frequency domain is composed of two signals, the
real and the imaginary parts. Complex numbers shorten the equations used in DSP, and enable
techniques that are difficult or impossible with real numbers alone. For instance, the Fast Fourier
Transform is based on complex numbers. Unfortunately, complex techniques are very
mathematical, and it requires a great deal of study and practice to use them effectively. Many
scientists and engineers regard complex techniques as the dividing line between DSP as a tool,
and DSP as a career. In this chapter, we look at the mathematics of complex numbers, and
elementary ways of using them in science and engineering. The following three chapters discuss
important techniques based on complex numbers: the complex Fourier transform, the Laplace
transform, and the z-transform. These complex transforms are the heart of theoretical DSP. Get
ready, here comes the math!

The Complex Number System

To illustrate complex numbers, consider a child throwing a ball into the air.
For example, assume that the ball is thrown straight up, with an initial
velocity of 9.8 meters per second. One second after it leaves the child's
hand, the ball has reached a height of 4.9 meters, and the acceleration of
gravity (9.8 meters per second?) has reduced its velocity to zero. The ball
then accelerates toward the ground, being caught by the child two seconds
after it was thrown. From basic physics equations, the height of the ball at
any instant of time is given by:

h - —9

= + vt
2

551



552

The Scientist and Engineer's Guide to Digital Sgnal Processing

where h is the height above the ground (in meters), g is the acceleration of
gravity (9.8 meters per second?), v is the initial velocity (9.8 meters per
second), and t is the time (in seconds).

Now, suppose we want to know when the ball passes a certain height.
Plugging in the known values and solving for t:

t = 1+/1-h/4.9

For instance, the ball is at a height of 3 meters twice: t = 0.38 (going up)
and t = 1.62 seconds (going down).

As long as we ask reasonable questions, these equations give reasonable
answers. But what happens when we ask unreasonable questions? For
example: At what time does the ball reach a height of 10 meters? This
guestion has no answer in reality because the ball never reaches this height.
Nevertheless, plugging the value of h = 10 into the above eguation gives two
answers. t = 1+¢/-1.041 and t = 1-4/-1.041. Both these answers contain
the square-root of a negative number, something that does not exist in the world
as we know it. This unusual property of polynomia equations was first used
by the Italian mathematician Girolamo Cardano (1501-1576). Two centuries
later, the great German mathematician Carl Friedrich Gauss (1777-1855)
coined the term complex numbers, and paved the way for the modern
understanding of the field.

Every complex number is the sum of two components. a real part and an
imaginary part. The real part is a real number, one of the ordinary
numbers we all learned in childhood. The imaginary part is an imaginary
number, that is, the square-root of a negative number. To keep things
standardized, the imaginary part is usually reduced to an ordinary number
multiplied by the square-root of negative one. As an example, the complex
number: t = 1+/-1.041, is first reduced to: t = 1+/1.041/- 1, and then to
the final form: t = 1+ 1.02y/-1. The real part of this complex number is 1,
while the imaginary part is 1.02y/-1. This notation allows the abstract term,
V-1, to be given a special symbol. Mathematicians have long used i to denote
v~1. In comparison, electrical engineers use the symboal, j, becausei is used
to represent electrical current. Both symbols are common in DSP. In this book
the electrical engineering convention, j, will be used.

For example, al the following are valid complex numbers. 1+2j, 1-2j,
-1+2j, 3.14159 + 2.7183], (4/3) + (19/2)]j, etc. All ordinary numbers, such as:
2, 6.34, and -1.414, can be viewed as a complex number with zero for the
imaginary part, i.e.,, 2+ 0j, 6.34+0j, and -1.414 + 0j.

Just as real numbers are described as having positions along a number line,
complex numbers are represented by locations in a two-dimensional display
called the complex plane. Asshown in Fig. 30-1, the horizontal axis of the
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FIGURE 30-1

The complex plane. Every complex number
has a unique location in the complex plane,
as illustrated by the three examples shown
here. The horizontal axis represents the real
part, while the vertical axis represents the
imaginary part.

<— Imaginary axis —>

R ;
8 -7 6 5 -4-32-10 8
<— Real axis —>

complex plane is the real part of the complex number, while the vertical axis
isthe imaginary part. Since real numbers are those complex numbers that have
an imaginary part equal to zero, the real number line is the same as the x-axis
of the complex plane.

In mathematical equations, a complex number is represented by a single
variable, even though it is composed of two parts. For example, the three
complex variables in Fig. 30-1 could be written:

A= 2+ 6j
B = -4- 15
C= 3-17]

where A, B, & C are complex variables. This illustrates a strong advantage
and a strong disadvantage of using complex numbers. The advantage is the
inherent shorthand of representing two things by a single symbol. The dis-
advantage is having to remember which variables are complex and which
variables are ordinary numbers.

The mathematical notation for separating a complex number into its real and
imaginary parts uses the operators. Re( ) and Im( ). For example, using the
above complex numbers:

ReA =2 ImMA =6
ReB ImB=-15
ReC ImC= -7

I 1l
w A
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Notice that the value returned by the mathematical operator, Im( ), does not
include thej. For example, Im(3+ 4j) isequal to 4, not 4j.

Complex numbers follow the same algebra as ordinary numbers, treating the
guantity, j, asaconstant. For instance, addition, subtraction, multiplication and
division are given by:

EQUATION 30-1
Addition of complex numbers.

EQUATION 30-2
Subtraction of complex numbers.

EQUATION 30-3
Multiplication of complex numbers.

EQUATION 30-4
Division of complex numbers.

(a+bj) + (c+dj)

(a+bj) - (c+dj)

(a+bj)(c+dj) =

(a+c) +j(b+d)

(a-c) +j(b-d)

(ac- bd) + j(bc+ ad)

(@a+bj) _ [ ac+ bd] ‘] ( bc—ad)

(c+dj) c?+d? c2+d?

Two tricks are used when manipulating equations such as these. First,
whenever a j2 term is encountered, it is replaced by -1. This follows from the
definition of j, that is: j2=(/-1)?>= -1. The second trick is a way to
eliminate the j term from the denominator of a fraction. For instance, the left
side of EQ. 30-4 has a denominator of c + dj. Thisis handled by multiplying
the numerator and denominator by the term c - jd, cancelling all the
imaginary terms from the denominator. In the jargon of the field, switching
the sign of the imaginary part of a complex number is called taking the
complex conjugate. Thisis denoted by a star at the upper right corner of the
variable. For example, if Z = a + bj, then Z* = a - bj. In other words, Eq. 30-
4 is derived by multiplying both the numerator and denominator by the complex
conjugate of the denominator.

The following properties hold even when the variables A, B, and C are
complex. These relations can be proven by breaking each variable into its real
and imaginary parts and working out the algebra.

EQUATION 30-5 AB = BA
Commutative property.

EQUATION 30-6 _
Associative property. (A+B)+C A+(B+C)
EQUATION 30-7

Distributive property. A(B+C) = AB+AC
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Polar Notation
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Complex numbers can also be expressed in polar notation, besides the
rectangular notation just described. For example, Fig. 30-2 shows three
complex numbers in polar form, the same ones previously presented in Fig.
30-1. The magnitude is the length of the vector starting at the origin and
ending at the complex point, while the phase angle is measured between
this vector and the positive x-axis. Complex numbers can be converted
between rectangular and polar notation by the following equations (paying
attention to the polar notation nuisances discussed in Chapter 8):

EQUATION 30-8

Rectangular-to-polar conversion. The
complex variable, A, can be changed from
rectangular form: Re A & Im A, to polar
form: M & 6.

EQUATION 30-9
Polar-to-rectangular conversion. Thisis
changing the complex number from M &
6toReA & ImA.

M = {(ReA)? + (ImA)?

0 = arctan ImA

ReA
ReA = M cos(0)
ImA = M sin(0)

This brings up a giant leap in the mathematics. (Yes, this means you should

pay extra attention).

FIGURE 30-2

Complex numbers in polar form. Three
example points in the complex plane are
shown in polar coordinates. Figure 30-1
shows these same points in rectangular
form.

6j

4
3
2
1+

| 2+6j or
M =v85 :
1 0= arctan (6/2) |

0 -+
-1 ;
'2J

<— |maginary axis ——»

- 5j
- 6j
- 7j

_81'7’ .

-4-15j or
M =v18.25 :
0= arctan (-1.5/-4) |7

7 6 5 -4 -3 -2
<—Red

-1 0 1

A complex number written in rectangular notation

il 0= arctan (-7/3)

----- i -
2 3 45 6 7 8

axis —>
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isinthe form: a + bj. Theinformation is carried in the variables: a & b, but
the proper complex number is the entire expression: a + bj. In polar form, the
key information is contained in M & 6, but what is the full expression for the
proper complex number?

The key to this is Eq. 30-9, the polar-to-rectangular conversion. If we start
with the proper complex number, a + bj, and apply Eq. 30-9, we obtain:

EQUATION 30-10

Rectangular and polar complex numbers.

The left side is the rectangular form of a . L.
complex number, while the expression on a+jb = M (COS@ +]8n 0 )
the right is the polar representation. The

conversion between: M & e anda & b, is

given by Egs. 30-8 and 30-9.

The expression on the left is the proper rectangular description of a complex
number, while the expression on the right is the proper polar description.

Before continuing with the next step, let's review how we arrived at this point.
First, we gave the rectangular form of a complex number a graphical
representation, that is, a location in a two-dimensional plane. Second, we
defined the terms M & 6 to be consistent with our previous experience about
the relationship between polar and rectangular coordinates (Eg. 30-8 and 30-9).
Third, we followed the mathematical consequences of these actions, arriving at
what the correct polar form of a complex number must be, i.e.,
M (cosO +j sinB). Even though this logic is straightforward, the result is
difficult to see with "intuition." Unfortunately, it gets worse.

One of the most important equations in complex mathematics is Euler's
relation, named for the clever and very prolific Swiss mathematician,
Leonhard Euler (1707-1783; Euler is pronounced: "Oiler"):

EQUATION 30-11

Euler'srelation. Thisisakey eguation
for using complex numbers in science
and engineering.

el = cosx +jsnx

If you like such things, this relation can be proven by expanding the
exponential term into a Taylor series:

|: Z ( )k 2k+

ard (2k +1)!

y 0 [i( e X

k=0 (2K)!

The two bracketed terms on the right of this expression are the Taylor series
for cos(x) and sin(x). Don't spend too much time on this proof; we aren't going
to use it for anything.
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Rewriting Eq. 30-10 using Euler's relation results in the most common way of
expressing a complex number in polar notation, a complex exponential:

EQUATION 30-12

Exponential form of complex numbers. . i0
The rectangular form, on the left, is a+jb = Me
equal to the exponential polar form, on

the right.

Complex numbers in this exponential form are the backbone of DSP
mathematics. Start your understanding by memorizing Egs. 30-8 through 30-
12. A strong advantage of using this exponential polar form is that it is very
simple to multiply and divide complex numbers:

EQUATION 30-13 io 0, i (6, +6,)
Multiplication of complex numbers. M,e*M,e? = MMe ™ =
jo
M, e'™ M. T
EQUATION 30-14 1 11 gi(61=6;)

Division of complex numbers. jo
P M2€J 2 2

That is, complex numbers in polar form are multiplied by multiplying their
magnitudes and adding their angles. The easiest way to perform addition
and subtraction in polar form is to convert the numbers to rectangular form,
perform the operation, and reconvert back into polar. Complex numbers are
usually expressed in rectangular form in computer routines, but in polar
form when writing and manipulating equations. Just as Re( ) and Im( )
are used to extract the rectangular components from a complex number, the
operators Mag( ) and Phase( ) are used to extract the polar components.
For example, if A=5e!™7 then Mag(A) = 5 and Phase(A) = n/7.

Using Complex Numbers by Substitution

Let's summarize where we are at. Solutions to common algebraic equations
often contain the square-root of a negative number. These are called
complex numbers, and represent solutions that cannot exist in the world as
we know it. Complex numbers are expressed in one of two forms. a + bj
(rectangular), or Me!® (polar), wherej is a symbol representing /-1. Using
either notation, a single complex number contains two separate pieces of
information, either a & b, or M & 6. In spite of their elusive nature, complex
numbers follow mathematical laws that are similar (or identical) to those
governing ordinary numbers.

This describes what complex numbers are and how they fit into the world of
pure mathematics. Our next task is to describe ways they are useful in science
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and engineering problems. How isit possible to use a mathematics that has no
connection with our everyday experience? The answer: If the tool we haveis
a hammer, make the problem look like a nail. In other words, we change the
physical problem into a complex number form, manipulate the complex
numbers, and then change back into a physical answer.

There are two ways that physical problems can be represented using complex
numbers. a simple method of substitution, and a more elegant method we will
call mathematical equivalence. Mathematical equivalence will be discussed
in the next chapter on the complex Fourier transform. The remainder of this
chapter is devoted to substitution.

Substitution takes two real physical parameters and places one in the real part
of the complex number and one in the imaginary part. This allows the two
values to be manipulated as a single entity, i.e., a single complex number.
After the desired mathematical operations, the complex number is separated
into its real and imaginary parts, which again correspond to the physical
parameters we are concerned with.

A simple example will show how this works. As you recall from elementary
physics, vectors can represent such things as: force, velocity, acceleration, etc.
For example, imagine a sailboat being pushed in one direction by the wind, and
in another direction by the ocean current. The resulting force on the boat is the
vector sum of the two individual force vectors. This example is shown in Fig.
30-3, where two vectors, A and B, are added through the parallelogram law,
resulting in C.

We can represent this problem with complex numbers by placing the east/west
coordinate into the real part of a complex number, and the north/south
coordinate into the imaginary part. This allows us to treat each vector as a
single complex number, even though it is composed of two parts. For instance,
the force of the wind, vector A, might be in the direction of 2 parts to the east
and 6 parts to the north, represented as the complex number: 2 + 6j. Likewise,
the force of the ocean current, vector B, might be in the direction of 4 parts to
the east and 3 parts to the south, represented as the complex number: 4 - 3j.
These two vectors can be added via Eg. 30-1, resulting in the complex number
representing vector C: 6 + 3j. Converting this back into a physical meaning,
the combined force on the sailboat is in the direction of 6 parts to the north and
3 parts to the east.

Could this problem be solved without complex numbers? Of course! The
complex numbers merely provide a formalized way of keeping track of the two
components that form a single vector. The idea to remember is that some
physical problems can be converted into a complex form by simply adding aj
to one of the components. Converting back to the physical problem is nothing
more than dropping the j. This is the essence of the substitution method.

Here's the rub. How do we know that the rules and laws that apply to
complex mathematics are the same rules and laws that apply to the original
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FIGURE 30-3

Adding vectorswith complex numbers. The
vectors A & B represent forces measured
with respect to north/south and east/west.
The east/west dimension is replaced by the
real part of the complex number, while the
north/south dimension is replaced by the
imaginary part. This substitution allows
complex mathematics to be used with an
entirely real problem.

West
<— Imaginary axis —>

physical problem? For instance, we used Eq. 30-1 to add the force vectorsin
the sailboat problem. How do we know that the addition of complex numbers
provides the same result as the addition of force vectors? In most cases, we
know that complex mathematics can be used for a particular application
because someone else said it does. Some brilliant and well respected
mathematician or engineer worked out the details and published the results.
The point to remember is that we cannot substitute just any problem into a
complex form and expect the answer to make sense. We must stick to
applications that have been shown to be applicable to complex analysis.

Let's look at an example where complex number substitution does not work.
Imagine that you buy apples for $5 a box, and oranges for $10 a box. You
represent this by the complex number: 5 + 10j. During a particular week, you
buy 6 boxes of apples and 2 boxes of oranges, which you represent by the
complex number: 6 + 2j. Thetotal price you must pay for the goods is equal
to number of items multiplied by the price of each item, that is,
(5+ 10j)(6+ 2j) = 10 + 70j. In other words, the complex math indicates you
must pay atotal of $10 for the apples and $70 for the oranges. The problem
is, the answer is completely wrong! The rules of complex mathematics do not
follow the rules of this particular physical problem.

Complex Representation of Sinusoids

Complex numbers find a niche in electronics and signal processing because
they are a compact way to represent and manipulate the most useful of all
waveforms: sine and cosine waves. The conventional way to represent a
sinusoid is; M cos(wt + ¢) or Acos(wt) + Bsin(wt), in polar and rectangular
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notation, respectively. Notice that we are representing frequency by o, the
natural frequency in radians per second. If it makes you more comfortable,
you can replace each » with 2=f to make the expressions in hertz. However,
most DSP mathematics is written using the shorter notation, and you should
become familiar with it. Since it requires two parameters to represent a single
sinusoid (i.e.,, A & B, or M & ¢), the use of complex numbers to represent
these important waveforms is a natural. Using substitution, the change from
the conventional sinusoid representation to a complex number is straight-
forward. In rectangular form:

Acos(wt) + Bsn(wt) = a+jb

(conventional representation)  (complex number)

where A=a, and B=-b. Put in words, the amplitude of the cosine wave
becomes the real part of the complex number, while the negative of the sine
wave's amplitude becomes the imaginary part. It is important to understand
that this is not an equation, but merely a way of letting a complex number
represent a sinusoid. This substitution also can be applied in polar form:

Mcos(wt+¢) = Mel®

(conventional representation) (complex number)

where M =M, and 6= -¢. Inwords, the polar notation substitution leaves the
magnitude the same, but changes the sign of the phase angle.

Why change the sign of the imaginary part & phase angle? This is to make the
substitution appear in the same form as the complex Fourier transform
described in the next chapter. The substitution techniques of this chapter gain
nothing from this sign change, but it is amost always done to keep things
consistent with the more advanced methods.

Using complex numbers to represent sine and cosine waves is a common
technique in electrical circuit analysis and DSP. Thisis because many (but not
al) of the rules and laws governing complex numbers are the same as those
governing sinusoids. In other words, we can represent the sine and cosine
waves with complex numbers, manipulate the numbers in various ways, and
have the resulting answer match the way the sinusoids behave.

However, we must be careful to use only those mathematical operations that
mimic the physical problem being represented (sinusoids in this case). For
example, suppose we use the complex variables, A and B, to represent two
sinusoids of the same frequency, but with different amplitudes and phase shifts.
When the two complex numbers are added, a third complex number is
produced. Likewise, a third sinusoid is created when the two sinusoids are
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added. As you would hope, the third complex number represents the third
sinusoid. The complex addition matches the physical system.

Now, imagine multiplying the complex numbers A and B, resulting in another
complex number. Does this match what happens when the two sinusoids are
multiplied? No! Multiplying two sinusoids does not produce another sinusoid.
Complex multiplication fails to match the physical system, and therefore cannot
be used.

Fortunately, the valid operations are clearly defined. Two conditions must be
satisfied. First, all of the sinusoids must be at the same frequency. For
example, if the complex numbers. 1+1j and 2 +2j represent sinusoids at the
same frequency, then the sum of the two sinusoids is represented by the
complex number: 3+3j. However, if 1+1j and 2 +2j represent sinusoids with
different frequencies, there is nothing that can be done with the complex
representation. In this case, the sum of the complex numbers, 3+3j, is
meaningless.

In spite of this, frequency can be left as a variable when using complex
numbers, but it must be the same frequency everywhere. For instance, it is
perfectly valid to add: 2w + 3wj and 3w + 1j, to produce: 5w+ (3w +1)j. These
represent sinusoids where the amplitude and phase vary as frequency changes.
While we do not know what the particular frequency is, we do know that it is
the same everywhere, i.e., w.

The second requirement is that the operations being represented must be linear,
as discussed in Chapter 5. For instance, sinusoids can be combined by addition
and subtraction, but not by multiplication or division. Likewise, systems may
be amplifiers, attenuators, high or low-pass filters, etc., but not such actions as:
squaring, clipping and thresholding. Remember, even convolution and Fourier
analysis are only valid for linear systems.

Complex Representation of Systems

Figure 30-4 shows an example of using complex numbers to represent a
sinusoid passing through a linear system. We will use continuous signals
for this example, although discrete signals are handled the same way. Since
the input signal is a sinusoid, and the system is linear, the output will also
be a sinusoid, and at the same frequency as the input. As shown, the
example input signal has a conventional representation of: 3cos(wt + 7/4),
or the equivalent expression: 2.1213cos(wt) - 2.1213sin(wt). When
represented by a complex number this becomes: 3e ™4 or 2.1213 +j 2.1213.
Likewise, the conventional representation of the output is. 1.5cos(wt - 7t/8),
or in the alternate form: 1.3858cos(wt) + 0.5740sin(wt). Thisis represented
by the complex number: 1.5e/™® or 1.3858 - j 0.5740.

The system's characteristics can also be represented by a complex number. The
magnitude of the complex number is the ratio between the magnitudes
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FIGURE 30-4

Sinusoids represented by complex numbers. Complex numbers are popular in DSP and el ectronics because
they are a convenient way to represent and manipulate sinusoids. Asshown in thisexample, sinusoidal input
and output signals can be represented as complex numbers, expressed in either polar or rectangular form. In
addition, the change that alinear system makes to a sinusoid can also be expressed as a complex humber.

of the input and output (i.e., M_,/M, ). Likewise, the angle of the complex
number is the negative of the difference between the input and output angles
(i.,e, - [d,,~ ¢,]1)- Inthe example used here, the system is described by the
complex number, 0.5e/3"8  In other words, the amplitude of the sinusoid is
reduced by 0.5, while the phase angle is changed by -3m/8.

The complex humber representing the system can be converted into rectangular
form as: 0.1913-j 0.4619, but we must be careful in interpreting what this
means. It does not mean that a sine wave passing through the system is
changed in amplitude by 0.1913, nor that a cosine wave is changed by -0.4619.
In general, a pure sine or cosine wave entering a linear system is converted into
a mixture of sine and cosine waves.

Fortunately, the complex math automatically keeps track of these cross-terms.
When a sinusoid passes through a linear system, the complex numbers
representing the input signal and the system are multiplied, producing the
complex number representing the output. If any two of the complex numbers are
known, the third can be found. The calculations can be carried out in either
polar or rectangular form, as shown in Fig. 30-4.

In previous chapters we described how the Fourier transform decomposes a
signal into cosine and sine waves. The amplitudes of the cosine waves are
called the real part, while the amplitudes of the sine waves are called the
imaginary part. We stressed that these amplitudes are ordinary numbers, and
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the terms real and imaginary are just names used to keep the two separate.
Now that complex numbers have been introduced, it should be quite obvious
were the names come from. For example, imagine a 1024 point signal being
decomposed into 513 cosine waves and 513 sine waves. Using substitution, we
can represent the spectrum by 513 complex numbers. However, don't be misled
into thinking that this is the complex Fourier transform, the topic of Chapter
31. Thisisstill thereal Fourier transform; the spectrum has just been placed
in a complex format by using substitution.

Electrical Circuit Analysis

This method of substituting complex numbers for cosine & sine waves is called
the Phasor transform. It isthe main tool used to analyze networks composed
of resistors, capacitors and inductors. [More formally, electrical engineers
define the phasor transform as multiplying by the complex term: e/t and taking
the real part. This allows the procedure to be written as an equation, making
it easier to deal with in mathematical work. “Substitution” achieves the same
end result, but is less elegant].

The first step is to understand the relationship between the current and voltage
for each of these devices. For the resistor, this is expressed in Ohm's law:
v = iR, where i is the instantaneous current through the device, v is the
instantaneous voltage across the device, and R is the resistance. In contrast,
the capacitor and inductor are governed by the differential equations:
i = Cdv/dt, and v= L di/dt, where C is the capacitance and L is the
inductance. In the most general method of circuit analysis, these nasty
differential equations are combined as dictated by the circuit configuration, and
then solved for the parameters of interest. While this will answer everything
about the circuit, the math can become a real mess.

This can be greatly simplified by restricting the signals to be sinusoids. By
representing these sinusoids with complex numbers, the difficult differential
eguations can be directly replaced with much simpler algebraic equations.
Figure 30-5 illustrates how this works. We treat each of these three
components (resistor, capacitor & inductor) as a system. The input to the
system is the sinusoidal current through the device, while the output is the
sinusoidal voltage across its two terminals. This means we can represent the
input and output of the system by the two complex variables: | (for current) and
V (for voltage), respectively. The relation between the input and output can
also be expressed by a complex number. This complex number is called the
impedance, and is given the symbol: Z. This means:

| xZ =V

In words, the complex number representing the sinusoidal voltage is equal to
the complex number representing the sinusoidal current multiplied by the
impedance (another complex number). Given any two, the third can be
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Definition of impedance. When sinusoidal voltages and currents are represented by complex numbers, theratio
between thetwo is called theimpedance, and is denoted by the complex variable, Z. Resistors, capacitors and
inductors have impedances of R, -j/wC, and jwL, respectively.

found. In polar form, the magnitude of the impedance is the ratio between the
amplitudes of V and I. Likewise, the phase of the impedance is the phase
difference between V and I.

This relation can be thought of as Ohm's law for sinusoids. Ohms's law
(v = iR) describes how the resistance relates the instantaneous current and
voltage in a resistor. When the signals are sinusoids represented by
complex numbers, the relation becomes: V= 1Z. That is, the impedance
relates the current and voltage. Resistance is an ordinary number, since it
deals with two ordinary numbers. Impedance is a complex number, since
it relates two complex numbers. Impedance contains more information than
resistance, because it dictates both the amplitudes and the phase angles.

From the differential equations that govern their operation, it can be shown that
the impedance of the resistor, capacitor, and inductor are: R, -j /wC, and jwl,
respectively. As an example, imagine that the current in each of these
components is a unity amplitude cosine wave, as shown in Fig. 30-5. Using
substitution, this is represented by the complex number: 1+0j. The voltage
across the resistor will be: V =1Z = (1+0j)R = R+0j. In other words, a
cosine wave of amplitude R. The voltage across the capacitor is found to be:
V=1Z=(1+0j)(-j/wC). This reduces to: 0-j/wC, a sine wave of
amplitude, /wC. Likewise, the voltage across the inductor can be calculated:
V=1Z=(1+0j)(jwL). Thisreducesto: 0+jwlL, a negative sine wave of
amplitude, wL.

The beauty of this method is that RLC circuits can be analyzed without having
to resort to differential equations. The impedance of the resistors, capacitors,
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RLC notch filter. Thiscircuit removes a —>
narrow band of frequenciesfrom asignal.
The use of complex substitution greatly
simplifies the analysis of this and similar Z2
circuits.

Z3

1

and inductors is treated the same as resistance in a DC circuit. This includes
all of the basic combinations, such as: resistors in series, resistorsin parallel,
voltage dividers, etc.

As an example, Fig. 30-6 shows an RLC circuit called anotch filter, used to
remove a harrow band of frequencies. For instance, it could eliminate 60 hertz
interference in an audio or instrumentation signal. If this circuit were
composed of three resistors (instead of the resistor, capacitor and inductor), the
relationship between the input and output signals would be given by the voltage
divider formula: v__/v. = (R2+R3)/(R1+R2+R3). Since the circuit contains

out n

capacitors and inductors, the equation is rewritten with impedances:

Vout 72+ 73

Vin Z1+72+73

where: Vout, Vin, Z1, Z2, and Z3 are all complex variables. Plugging in the
impedance of each component:

ij—%

Vout wC
vin RJrj(JoL—L
wC

Next, we crank through the algebra to separate everything containing a j,
from everything that does not contain aj. In other words, we separate the
eguation into its real and imaginary parts. This algebra can be tiresome and
long, but the alternative is to write and solve differential equations, an
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Notch filter frequency response. These curves are for the component values: R =50Q, C
= 470pF, and L =54 pH.

even nastier task. When separated into the real and imaginary parts, the
complex representation of the notch filter becomes:

Vout k2 . Rk

= +

Vin R2+ k2 J R2+ k2

where K = wL - J/wC
Lastly, the relation is converted to polar notation, and graphed in Fig. 30-7:

Mag = ol - VwC Phase = arctan[ L}

1/2 _
(R2+[mL—1/mC]2) ol - leC

The key point to remember from these examples is how substitution allows
complex numbers to represent real world problems. In the next chapter we will
look at a more advanced way to use complex numbers in science and
engineering, mathematical equivalence.
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Getting Started with DSPs

Once you decide that a Digital Signal Processor is right for your application, you need a way to
get started. Many manufacturers will sell you a low cost evaluation kit, allowing you to
experience their products first-hand. These are a great educational tool; it doesn't matter if you
are a novice or a pro, they are the best way to become familiar with a particular DSP. For
instance, Analog Devices provides the EZ-KIT® Lite to teach potential customers about its
SHARC?® family of Digital Signal Processors. For only $179, you receive all the hardware and
software you need to see the DSP in action. This includes "canned" programs provided with the
kit, as well as applications you can write yourself in assembly or C.  Suppose you buy one of
these kits from Analog Devices and play with it for afew days. This chapter is an overview of
what you can expect to find and learn.

The ADSP-2106x family

In the last chapter we looked at the general operation of the ADSP-2106x
"SHARC" family of Digital Signal Processors. Table 29-1 shows the various
members of this family. All these devices use the same architecture, but have
different amounts of on-chip memory, a key factor in deciding which one to
use. Memory access is a common bottleneck in DSP systems. The SHARC
DSPs address this by providing an ample supply of on-chip dual-ported SRAM.
However, the last thing you want to do is pay for more memory than you need.
DSPs often go into cost sensitive products, such as cellular telephones and CD
players. In other words, the organization of this family is determined by
marketing as well as technology.

The oldest member of this family isthe ADSP-21020. This chip contains the
core architecture, but does not include on-chip memory or 1/O handling. This
means it cannot function as a stand-alone computer; it requires external
components to be a functional system. The other devices are complete

SHARC, EZ-KIT, EZ-LAB, VisualDSP, EZ-ICE, the SHARC logo, the Analog Devices
logo, and the VisualDSP logo are registered trademarks of Analog Devices, Inc.
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PRODUCT Memory Notes

Quad-SHARC, Four ADSP-21060'sin the

AD1460 4 Mbit x4 same module; provides an incredible 480

MFLOPSinonly 2.05"x2.05"x0.16".

New! Features Single Instruction Multiple

ADSP-21160M 4 Mbit Data (SIMD) core architecture; optimized

for multiprocessing with link ports, 64 bit
external bus, and 14 channels of DMA

Power house of the family; most memory;

ADSP-21060 4 Mbit link ports for high speed datatransfer and

multi-processing

Same features as the ADSP-21060, but with

ADSP-21062 2 Mbit less internal memory (SRAM), for lower

cost

Low cost version used inthe EZ-KIT Lite;

ADSP-21061 1 Mbit less memory & no link ports; additional

featuresin DMA for the serial port

A recent addition to the family; fast and very

ADSP-21065L 544 kbit low cost ($10). Will attract many fixed point

applications to the SHARC family

Oldest member of the family. Containsthe

ADSP-21020 -0- core processor, but no on-chip memory or

1/Ointerface. Not quitea SHARC DSP.

TABLE 29-1
Members of the SHARC family.

computers within a single chip. All they require to operate is a source of
power, and some way to load a program into memory, such as an external
PROM or data link.

Notice in Table 29-1 that even the low-end products have a very significant
amount of memory. For instance, the ADSP-21065L has 544 kbits of internal
SRAM. Thisis enough to hold 6-8 seconds of digitized speech (8k samples per
second, 8 bits per sample). On the high-end of the family, the ADSP-21060
has a 4 Mbit memory. This is more than enough to store an entire digitized
image (512x512 pixels, 8 hits per pixel). If you require even more memory,
you easily add external SRAM (or slower memory) to any of these devices.

In addition to memory, there are also differences between these family
members in their I/O sections. The ADSP-21060 and ADSP-21062 (the high-
end) each have six link ports. These are 4 bit wide parallel connections for
combining DSPs in multiprocessing systems, and other applications that
require flexible high-speed 1/0. The ADSP-21061 and ADSP-21065L (the
low-end) do not have link ports, but feature more DMA channels to assist
in their serial port operation. You will also see these part numbers with an
"L" or "M" after them, such as "ADSP-21060L." This indicates that the
device operates from a voltage lower than the traditional 5.0 volts. For
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FIGURE 29-1

Block diagram of the EZ-KIT Lite board. Only four external connections are needed: audio in,
audio out, aserial (RS-232) cableto your personal computer, and power. The serial cable and
power supply are provided with the EZ-KIT Lite.

instance, the ADSP-21060L operates from 3.3 volts, while the ADSP-21160M
uses only 2.5 volts.

In June 1998, Analog Devices unveiled the second generation of its SHARC
architecture, with the announcement of the ADSP-21160. This features a
Single Instruction Multiple Data (SIMD, or "sim-dee") core architecture
operating at 100 MHz, an accelerated memory bus bandwidth of 1600
megabytes per second, two 64 bit data busses, and four 80-bit accumulators
for fixed point calculations. All totaled, the new ADSP-21160M executes a
1024 point FFT in only 46 microseconds. The SIMD DSP contains a second
set of computational units (arithmetic and logic unit, barrel shifter, data register
file, and multiplier), allowing ADI to maintain backward code compatibility
with the ADSP-2106x family, while providing a road-map to up to ten times
higher performance.

The SHARC EZ-KIT Lite

The EZ-Kit Lite gives you everything you need to learn about the SHARC
DSP, including: hardware, software, and reference manuals. Figure 29-1
shows a block diagram of the hardware provided in the EZ-KIT Lite, based
around the ADSP-21061 Digital Signal Processor. This comes as a 4% x 6%
inch printed circuit board, mounted on plastic standoffs to allow it to sit on
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your desk. (There is also a version called the EZ-LAB, using the ADSP-
21062, that plugs into a slot in your computer). There are only four
connections you need to worry about: DC power, a serial connection to your
personal computer, and the input and output signals. A DC power supply and
serial cable are even provided in the kit. The input and output signals are at
audio level, about 1 volt amplitude. Alternatively, a jumper on the board
allows a microphone to be directly attached into the input. Theideaisto plug
a microphone into the input, and attach a set of amplified speakers (such as
used with personal computers) to the output. This allows you to hear the effect
of various DSP algorithms.

Analog-to-digital and digital-to-analog conversion is accomplished with an
Analog Devices AD1847 codec (coder-decoder). Thisis a 16 bit sigma-delta
converter, capable of digitizing two channels (stereo) at a rate of up to 48k
samples/second, and simultaneously outputing two channels at the same rate.
Since the primary use of this board is to process audio signals, the inputs and
outputs are AC coupled with a cutoff of about 20 Hz.

Three push buttons on the board allow the user to generate an interrupt, reset
the processor, and toggle a flag bit that can be read by the system. Four LEDs
mounted on the board can be turned on and off by toggling bits. If you are
ambitious, there are sections of the board that allow you to access the serial
port, link ports (only on the EZ-LAB with its ADSP-21062), and processor bus.
However, these are unpopulated, and you will need to attach the connectors
and other components yourself.

Here's how it works. When the power is applied, the processor boots from an
on-board EPROM (512 kbytes), loading a program that establishes serial
communication with your personal computer. Next, you launch the EZ-Lite
Host program on you PC, allowing you to download programs and upload data
from the DSP. Several prewritten programs come with the EZ-KIT Lite; these
can be run by simply clicking on icons. For instance, a band-pass program
allows you to speak into the microphone, and hear the result after passing
through a band-pass filter. These programs are useful for two reasons: (1) they
allow you to quickly get the system doing something interesting, giving you
confidence that it does work, and (2) they provide a template for creating
programs of your own. Which brings us to our next topic, a design example
using the EZ-KIT Lite.

Design Example: An FIR Audio Filter

After you experiment with the prewritten programs for awhile, you will want
to modify them to gain experience with the programming. Programs can be
written in either assembly or C; the EZ-KIT Lite provides software tools to
support both languages. Later in this chapter we will look at advanced methods
of programming, such as simulation, debugging, and working in an integrated
development environment. For now, we will focus on the easiest way to get
a program to run. Little steps for little feet.
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Example FIR filter. In (a) the frequency response of a highly custom filter is shown. The
corresponding impul se response (filter kernel) isshownin (b). Thisfilter was designed in Chapter
17 to show that virtually any frequency response can be achieved with FIR digital filters.

Since the source code is in ASCII, a standard text editor is all that is needed
to make changes to existing files, or create entirely new programs. Table 29-2
shows an example of an FIR filter program written in assembly. While thisis
the only code you need to worry about for now, keep in mind that there are
other files needed to make this a complete program. This includes an
"architecture description file" (which defines the hardware configuration and
memory allocation), setup of the interrupt vector table, and a codec
initialization routine. Eventually you will need to understand what goes on
in these sections, but for now you simply copy them from the prewritten
programs.

As shown at the top of Table 29-2, there are three variables that need to be
defined before jJumping into the main section of code. These are the number of
points in the filter kernel, NR_COEF; a circular buffer that holds the past
samples from the input signal, dling[ ]; and a circular buffer that holds the
filter kernel, coef[ ]. We also need to give the program two other pieces of
information: the sampling rate of the codec, and the name of the file containing
the filter kernel, so that it can be read into coef[ ]. All these steps are easy;
nothing more than a single line of code each. We don't show them in this
example because they are contained in the sections of code that we are ignoring
for simplicity.

Figure 29-2 shows the filter kernel we will test the program with, the same
custom filter we designed in Chapter 17. Asyou recall, this filter was chosen
to have a very irregular frequency response, reinforcing the notion that FIR
digital filters can provide virtually any frequency response you desire. Figure
(a) shows the frequency response of our test filter, while (b) shows the
corresponding impulse response (i.e., the filter kernel). This 301 point filter
kernel is stored in an ASCII file, and is combined with the other sections of
code during linking to form a single executable program.
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The main section of the program performs two functions. In lines 6 to 13, the
data-address-generators (DAGs) are configured to manage the circular buffers:
dling[ ], and coef[ ]. As described in the last chapter, three parameters are
needed for each buffer: the starting location of the buffer in memory (b0 and
b8), the length of the buffer (10 and 18), and the step size of the data being
stored in the buffer (mO and m8). These parameters that control the circular
buffers are stored in hardware registers in the DAGs, allowing them to access
and manage the data very efficiently.

The second action of the main program is a "thumb-twiddling" loop,
implemented in lines 15 to 19. This does nothing but wait for an interrupt
indicating that an input sample has been acquired. All of the processing in this
program occurs on a sample-by-sample basis. Each time a sample is read
from the input, a sample in the output signal is calculated and routed to the
codec. Most time-domain algorithms, such as FIR and IR filters, fall into this
category. The aternative is frame-by-frame processing, which is required
for frequency-domain techniques. In the frame-by-frame method, a group of
samples is read from the input, calculations are conducted, and a group of
samples is written to the output.

The subroutine that services the sample-ready interrupt is broken into three
sections. The first section (lines 27 to 33) fetches the sample from the codec
as a fixed point number, and converts it to floating point. In SHARC
assembly language, a data register holding a fixed point number is referred to
by "r" (such as rQ, r8, r15, etc.), and by "f" if it is holding a floating point
number (i.e., fO, 8, or f15.). For instance, in line 32, the fixed point number
in data register 0 (i.e., r0) is converted into a floating point number and
overwrites data register O (i.e., f0). This conversion is done according to a
scaling specified by the fixed point number in dataregister 1 (i.e. rl). Inthe
third section (lines 47 to 53), the opposite steps take place; the floating point
number for the output sample is converted to fixed point and sent to the codec.

The FIR filter that converts the input samples into the output samples is
contained in lines 35 to 45. All the calculations are carried out in floating
point, avoiding the need to worry about scaling and overflow. As described in
the last chapter, this section of code is optimized to take advantage of the
SHARC DSP's ahility to execute multiple instructions each clock cycle.

After we have the assembly program written and the filter kernel designed,
we are ready to create a program that can be executed on the SHARC DSP.
This is done by running the compiler, the assembler, and then the linker;
three programs provided with the EZ-KIT Lite. The compiler converts a C
program into the SHARC's assembly language. If you directly write the
program in assembly, such as in this example, you bypass this step. The
assembler and linker convert the program and external files (such as the
architecture file, codec initialization routines, filter kernel, etc.) into the final
executable file. All thistakes about 30 seconds, with the final result being
a SHARC program residing on the harddisk of your PC. The EZ-KIT Lite
host is then used to run the program on the EZ-KIT Lite. Simply click
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Before entering the main program, the following constant and variables must be defined:

NR_COEF The number of coefficientsin the filter kernel (301 in this example)
dlineflNR_COEF] A circular buffer holding the past input samples, in data memory
coef[NR_COEF] A circular buffer holding the filter coefficients, in program memory
001 /************************************************************************
002 khkkkhkkkhkhkkhkhkkhkkkkhkkkhkk%x MAIN PROGRAM kkhkkkkhkkkhkkhkkhkhkkhkhkkhkhkkkkkx*%
003 ************************************************************************/
004 main:
005
006 /* INITIALIZE THE DAGS TO CONTROL THE CIRCULAR BUFFERS */
007
008 b0 =dline; /* set up dling][ ], the buffer holding the past input samples */
009 10 = @dline;
010 mO0 = 1;
011 b8 = coef; /* set up coef[ ], the buffer holding the filter coefficients */
012 |8 = @coef;
013 m8 =1;
014
015 /* ENTER A LOOP, WAITING FOR THE SAMPLE-READY INTERRUPT */
016
017 wait:
018 idle;
019 jump wait;
020
021
022 /***********************************************************************
023 KR AIA KA K SUBROUTINE TO PROCESS ONE SAMPLE FHE KKK KKK KK
024 ***********************************************************************/
025 sample_ready:
026
027 /* ACQUIRE THE INPUT SAMPLE, CONVERT TO FLOATING POINT */
028
029 rO = dm(rx_buf + 1); /* move the input sampleinto r0 */
030 rO = Ishift rO by 16; /* shift to the highest 16 bits to preserve the sign */
031 rl=-31; /* set the scaling for the conversion */
032 fO =float rO by r1; /* convert from fixed to floating point */
033 dm(iO,m0) = f0; /* store the new samplein dling[ ], and zero f12 */
034
035 /* CALCULATE THE OUTPUT SAMPLE FROM THE FIR FILTER */
036
037 f12=0; /* prime the registers */
038 f2 = dm(i0,m0), f4 = pm(i8,m8);
039 f8 = f2*f4, {2 = dm(i0,m0), f4 = pm(i8,m8);
040 /* efficient main loop */
041 Ientr = NR_COEF-2, do (pc,1) until Ice;
042 f8 = f2*f4, {12 = f8+f12, f2 = dm(i0,m0), f4 = pm(i8,m8);
043
044 f8 = f2*f4, {12 = f8+f12; /* complete the last loop */
045 f12 = f8+f12;
046
047 /* CONVERT THE OUTPUT SAMPLE TO FIXED POINT & OUTPUT */
048
049 rl=31; /* set the scaling for the conversion */
050 r8 = fix f12 by r1; /* convert from floating to fixed point */
051 rti(db); /* return from interrupt, but execute next 2 lines */
052 r8 = Ishift r8 by -16; /* shift to the lowest 16 bits */
053 dm(tx_buf + 1) =r8; /* move the sampl e to the output */
TABLE 29-2

FIR filter program in assembly.
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on the file you want the DSP to run, and the EZ-KIT Lite host takes care of the
rest, downloading the program and starting it running.

This brings us to two questions. First, how do we test our audio filter to make
sure it is operating as we designed it; and second, what in the world is a
company called Analog Devices doing making Digital Sgnal Processors?

Analog measurements on a DSP system

For just a few moments, forget that you are studying digital techniques. Let's
take alook at this from the standpoint of an engineer that specializes in analog
electronics. He doesn't care what is inside of the EZ-KIT Lite, only that it has
an analog input and an analog output. As shown in Fig. 29-3, he would invoke
the traditional analog method of analyzing a "black box," attach a signal
generator to the input, and look at the output on an oscilloscope.

What does our analog guru find? First, the system is linear (as least as far as
this simple test can tell). If a sine wave is placed into the input, a sine wave
is observed on the output. If the amplitude or frequency of the input is
changed, a corresponding change is seen in the output. When the input
frequency is slowly increased, there comes a point where the amplitude of the
output sine wave decreases rapidly to zero. That occurs just below one-half the
sampling rate, due to the action of the anti-alias filter on the ADC.

Now our engineer notices something unknown in the analog world: the
system has a perfect linear phase. In other words, there is a constant delay
between an event occurring in the input signal, and the result of that event
in the output signal. For instance, consider our example filter kernel in Fig.
29-3. Since the center of symmetry is at sample 150, the output signal will
be delayed by 150 samples relative to the input signal. If the system is
sampling at 8 kHz, for example, this delay will be 18.75 milliseconds. In
addition, the sigma-delta converter will also provide a small additional
fixed delay.

Oscilloscope

Signal Generator

‘l_ljlllllo]

input
EZ-KIT

m

FIGURE 29-3

Testing the EZ-KIT Lite. Analog engineerstest the performance of a system by connecting asignal
generator to itsinput, and an oscilloscope to its output. When a DSP system (such asthe EZ-KIT
Lite) istested in thisway, it appearsto be avirtually perfect analog system



FIGURE 29-4

Measured frequency response. This graph
shows measured points on the frequency
response of the example FIR filter. These
measured points have far less accuracy than
the designed frequency response of Fig. 29-

3a
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Our analog engineer will become very agitated when he sees this linear phase.
The signals won't appear the way he thinks they should, and he will start
twisting knobs at lightning speed. He will complain that the triggering isn't
working right, and mumble such things as: "this doesn't make sense," what's
going on here?', and "who's been playing with my oscilloscope?' The
performance of DSP systems is so good, it will take him a few minutes before
he understands what he is seeing.

To make him even more impressed, we ask our engineer to manually measure
the frequency response of the system. To do this, he will step the signal
generator through all the frequencies between 125 Hz and 10 kHz in
increments of 125 Hz. At each frequency he measures the amplitude of the
output signal and divides it by the amplitude of the input signal. (Of course,
the easiest way to do this is to keep the input signal at a constant amplitude).
We set the sampling rate of the EZ-KIT Lite at 22 kHz for this test. In other
words, the 0 to 0.5 digital frequency of Fig. 29-2ais mapped to DC to 11 kHz
in our real world measurement.

Figure 29-4 shows actual measurements taken on the EZ-KIT Lite; it
couldn't be better! The measured data points agree with the theoretical
curve within the limit of measurement error. Thisis something our analog
engineer has never seen with filters made from resistors, capacitors, and
inductors.

However, even this doesn't give the DSP the credit it deserves. Analog
measurements using oscilloscopes and digital-volt-meters have a typical
accuracy and precision of about 0.1% to 1%. In comparison, this DSP system
is limited only by the ~0.001% round-off error of the 16 bit codec, since the
internal calculations use floating point. In other words, the device being
evaluated is one-hundred times more precise than the measurement tool being
used. A proper evaluation of the frequency response would require a
specialized instrument, such as a computerized data acquisition system with a
20 bit ADC. Given these facts, it is not surprising that DSPs are often used in
measurement instruments to achieve high precision.



544 The Scientist and Engineer's Guide to Digital Sgnal Processing

Now we can answer the question: Why does Analog Devices sell Digital
Signal Processors? Only a decade ago, state-of-the-art signal processing was
carried out with precision op amps and similar transistor circuits. Today, the
highest quality analog processing is accomplished with digital techniques.
Analog Devicesis agreat role-model for individuals and other companies; hold
on to your vision and goals, but don't be afraid to adapt with the changing
technology!

Another Look at Fixed versus Floating Point

In this last example, we took advantage of one of the SHARC DSP's key
features, its ability to handle floating point calculations. Even though the
samples are in a fixed point format when passed to and from the codec, we go
to the trouble of converting them to floating point for the intermediate FIR
filtering algorithm. As discussed in the last chapter, there are two reasons for
wanting to process the data with floating point math: ease of programming, and
performance. Does it really make a difference?

For the programmer, yes, it makes a large difference. Floating point code is
far easier to write. Look back at the assembly program in Table 29-2. There
are only two lines (41 and 42) in the main FIR filter. In contrast, the fixed
point programmer must add code to manage the data at each math calculation.
To avoid overflow and underflow, the values must be checked for size and, if
needed, scaled accordingly. The intermediate results will also need to be stored
in an extended precision accumulator to avoid the devastating effects of
repeated round-off error.

The issue of performance is much more subtle. For example, Fig. 29-5a shows
an FIR low-pass filter with a moderately sharp cutoff, as described in Chapter
16. This "large scale" curve would look the same whether fixed or floating
point were used in the calculation. To see the difference between these two
methods, we must zoom in on the amplitude by a factor of several hundred as
shown in (b), (c), and (d). Here we can see a clear difference. The floating
point execution, (b), has such low round-off noise that its performance is
limited by the way we designed the filter kernel. The 0.02% overshoot near the
transition is a characteristic of the Blackman window used in this filter. The
point is, if we want to improve the performance, we need to work on the
algorithm, not the implementation. The curvesin (c) and (d) show the round-
off noise introduced when each point in the filter kernel is represented by 16
and 14 bits, respectively. A better algorithm would do nothing to make these
better curves; the shape of the actual frequency response is swamped by
noi se.

Figure 29-6 shows the difference between fixed and floating point in the
time domain. Figure (a) shows awiggly signal that exponentially decreases
in amplitude. This might represent, for example, the sound wave from a
plucked string, or the shaking of the ground from a distant explosion. As
before, this "large scale” waveform would look the same whether fixed or
floating point were used to represent the samples. To see the difference,
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FIGURE 29-5

Round-off noisein the frequency response. Figure (a) shows the frequency response of awindowed-sinc low-pass
filter, using a Blackman window and 150 points in the filter kernel. Figures (b), (c), and (d) show a more detailed
view of thisresponse by zooming in on the amplitude. When thefilter kernel is represented in floating point, (b), the
round-off noiseisinggnificant compared to the imperfections of the windowed-sinc design. Asshownin (c) and (d),
representing the filter kernel in fixed point makes round-off noise the dominate imperfection.

we must zoom in on the amplitude, as shown in (b), (c) and (d). As discussed
in Chapter 3, this quantization appears much as additive random noise, limiting
the detectability of small components in the signals.

These performance differences between fixed and floating point are often not
important; for instance, they cannot even be seen in the "large scale" signals
of Fig. 29-5a and Fig. 29-6a. However, there are some applications where the
extra performance of floating point is helpful, and may even be critical. For
instance, high-fidelity consumer audio system, such as CD players, represent
the signals with 16 bit fixed point. In most cases, this exceeds the capability
of human hearing. However, the best professional audio systems sample the
signals with as high as 20 to 24 bits, leaving absolutely no room for artifacts
that might contaminate the music. Floating point is nearly ideal for algorithms
that process these high-precision digital signals.

Another case where the higher performance of floating point is needed is
when the algorithm is especially sensitive to noise. For instance, FIR
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Round-off noise in the time domain. Figure (a) shows an example signal with an exponentially decaying
amplitude. Figures (b), (c), and (d) show a more detailed view by zooming in on the amplitude. When the
signal is represented in floating point, (b), the round-off noise is so low that it cannot be seen in this graph.
Asshownin (c) and (d), representing the signal in fixed point produces far higher levels of round-off noise.

filters are quite insensitive to round-off effects. Asshown in Fig. 29-5, round-
off noise doesn't change the overall shape of the frequency response; the entire
curve just becomes noisier. |IR filters are a different story; round-off can
cause all sorts of havoc, including making them unstable. Floating point allows
these algorithms to achieve better performance in cutoff frequency sharpness,
stopband attenuation, and step response overshoot.

Advanced Software Tools

Our custom filter example shows the easiest way to get a program running on
the SHARC DSP: editing, assembling, linking, and downloading, performed by
individual programs. This method is fine for simple tasks, but there are better
software tools available for the advanced programmer. Let's look at what is
available for when you get really serious about DSPs.

The first tool we want to examine is the C compiler. As discussed in
the last chapter, both assembly and C are commonly used to program
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MATH OPERATIONS

abs
acos
asin
atan
atan2
cabsf
cexpf
cos
cosh
cot
div
exp
fmod
log
log10
matadd
matmul
pow
rand
sin
sinh
sqrt
srand
tan
tanh

absolute value

arc cosine

arc sine

arc tangent

arc tangent of quotient
complex absolute value
complex exponential
cosine

hyperbolic cosine
cotangent

division

exponential

modulus

natural logarithm

base 10 logarithm
matrix addition

matrix multiplication
raiseto a power
random number generator
sine

hyperbolic sine
sguare root

random number seed
tangent

hyperbolic tangent

PROGRAM CONTROL

abort

caloc

free

idle
interrupt
poll_flag_in
set_flag
timer_off
timer_on
timer_set

TABLE 29-3

abnormal program end
allocate/ initialize memory
deallocate memory
processor idle instruction
defineinterrupt handling
test input flag

sets the processor flags
disable processor timer
enabl e processor timer
initialize processor timer

Clibrary functions. Thisisapartial list of the
functions available when C isused to program
the Analog Devices SHARC DSPs.

CHARACTER & STRING MANIPULATION

atoi
bsearch
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
memchr
memcpy
strcat
strcmp
strerror
strlen
strncmp
strrchr
strstr
strtok
system
tolower
toupper

convert string to integer
binary search of array

detect al phanumeric character
detect al phabetic character
detect control character

detect decimal digit

detect printable character
detect |owercase character
detect printable character
detect punctuation character
detect whitespace character
detect uppercase character
detect hexadecimal digit

find first occurrence of char
copy characters

concatenate strings

compare strings

get error message

string length

compare characters

find last occurrence of char
find string within string
convert string to tokens

sent string to operating system
change uppercase to lowercase
change lowercase to uppercase

SIGNAL PROCESSING

a_compress
a_expand
autocorr
biquad

cfftN
Crosscorr

fir

histogram
iffN

iir

mean
mu_compress
mu_expand
rfftN

rms

A-law compressing
A-law expansion
autocorrelation
biquad filter section
complex FFT
cross-correlation

FIR filter

histogram

inverse complex FFT
IR filter

mean of an array

mu law compression
mu law expansion
real FFT

rmsvalue of an array
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DSPs. A tremendous advantage of using C is the library of functions, both
standard C operations, as well as DSP algorithms. Table 29-3 shows a partial
list of the C library functions for the SHARC DSPs. The math group includes
many functions common in DSP, such as the trig functions (sin, cos, tan, etc.),
logarithm, and exponent. |f you need these type of functions in your program,
thisis probably enough motivation in itself to use C instead of assembly. Pay
special attention to the "signal processing” routinesin Table 29-3. Here you
will find key DSP agorithms, including: real and complex FFTs, FIR and IR
filters, and statistical functions such as the mean, rms value, and variance. Of
course, all these routines are written in assembly, allowing them to be very
efficient in both speed and memory usage.
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* CIRCBUF.C */
/*  Thisisan echo program written in C for the ADSP-21061 EZ-KIT Lite. The */
/*  echo program takes the talkthru program and adds a circular buffering scheme.
/* The circular buffer is defined by the functions CIRCULAR_BUFFER, BASE,

/* and LENGTH. The echo is performed by adding the current input to the oldest
/*  input. The delay in the echo can be modified by changing BUFF_LENGTH. */
/*

/*

#include <21020.h> /* for theidle() command */

#include <signal.h> /* for the interrupt command */

#include <macros.h> /* for the CIRCULAR_BUFFER and segment functions */

#define BUFF_LENGTH 4000
/* define echo as 21k DAGlregil */

CIRCULAR_BUFFER (float,1,echo) /* aDM pointer to acircular buffer */
volatile float in_port segment (hip_reg0); /* hip_reg0 and hip-reg2 are */
volatile float out_port segment (hip_reg2); /* used in the architecture file */

void process_input (int);
void main (void)

{ /* Makethisavariable length array. If emulator is stopped at main */
/* and _BUFF_LENGTH in dm window is modified, the echo delay */
/* ismodified. Do not make BUFF_LENGTH greater than stack size! */

float data_buff [BUFF_LENGTH];
interrupt (SIG_IRQS3, process_input);

BASE (echo) = data_buff; /* Loads bl and il with buff start adr */
LENGTH (echo) = BUFF_LENGTH; /* Loads L1 with the length of the buffer */

/* asthe array isfilled, the nth location contains the newest value, while */
/* the nth + 1 location contains the oldest value. */

while (1)

/* the echo sends the sum of the most */
float oldest, newest; /* recent value and the oldest value */
idle();

/* Echo is pointing to the nth location after the interrupt routine.  */
/* Place the new value in variable 'newest'. After the access, update */
/* the pointer by one to point at location n+1. */
CIRC_READ (echo, 1 newest, dm);
/* Now echo is pointing to n+1. Read the location and place valuein */
/* variable'oldest’. Do not update the pointer, sinceit is now */
/* pointing to the new location for the interrupt handler. */
CIR_READ (echo, 0, oldest, dm);
/* add the oldest and most recent and send out on port */
out_port=oldest+newest;
}
}

void process_input (int int_number)

/* The newest input value is written over the oldest value in the nth */
/* location and the pointer is not updated. */
CIRC_WRITE (echo, 0, in_port, dm);
}

TABLE 29-4

*/
*/
*/

*/
*/



Chapter 29- Getting Started with DSPs 549

P VisualDSP Integrated Development Environment - dft_c.c [_[5]x]
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asm (" .seqment/dm seq dmda; -
.var _input[64] = Y"testéd.dati"; b
-GLOBAL _input: 4

= Presentation.dpi, target: ... H[=[E3

2 .endseg; Y == Presentation
0 dit_c.c
. seguent/pn seg_puda; dit_c Idf
VAR _sine[64]= \"zinéd.dat\"; b
4 .GLOBAL _sine:
- ehdseq;”) ;

float pm real[N]:
float pm imag[N];

5 1:151n( ]

int n, k:

for (k=0;k<N:k++)
{
real[k] = imag[k] = O;
for (n=0;n<N;n++)
{
real[k] = real[k] + input[n]*sine[ (n*k+M/4)3N];

imag[k] = imag[k] - inpuc[n]*sine[ (h*k]%N]: -

<11 3 =
x| Executing Compiler on “C:)\Program Files\Analog Devices\¥isualD3PhZlk\Examples\DEtChdft c.c™... ﬁ— 3
= Executing Linker on "C:‘\Program Files\dnalog Devices\¥isualDSP4Zlk\Examples\DftC\debugidft_c.doj”™ -T "C:h
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: e
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1. Move easily between Edit, Build, and Debug activities

2. Mix Assembly and C in acommon source file

3. View "build" results

4. Powerful editor understands syntax

5. Easy access through bookmarks

FIGURE 29-7

Example screen from VisualDSP. This provides an integrated development environment for creating
programs on the SHARC. All of the following functions can be accessed from this single interface:
editing, compiling, assembling, linking, simulating, debugging, downloading, and PROM creation.

Table 29-4 shows an example C program, taken from the Analog Devices "C
Compiler Guide and Reference Manual." This program generates an echo by
adding a delayed version of the signal to itself. The most recent 4000 samples
from the input signal are stored in a circular buffer. As each sample is
acquired, the circular buffer is updated, the newest sample is added to a scaled
version of the oldest sample, and the resulting sample directed to the output.

The next advanced software tool you should look for is an integrated
development environment. This is a fancy term that means everything
needed to program and test the DSP is combined into one smoothly functioning
package. Analog Devices provides an integrated development environment in
a product called VisualDSP®, running under Windows® 95 and Windows
NT™. Figure 29-7 shows an example of the main screen, providing a seamless
way to edit, build, and debug programs.

Here are some of the key features of VisualDSP, showing why an integrated
development environment is so important for fast software development. The
editor is specialized for creating programs in C, assembly, and a mixture of
the two. For instance, it understands the syntax of the languages, allowing
it to display different types of statements in different colors. You can also
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2. View mixed C and Assembly listings
3. Create custom Register window

FIGURE 29-8

Visual DSP debugging screen. Thisis acommon interface for both simulation and emulation. It can
view a C program interspersed with the resulting assembly code, track execution of instructions; examine
registers (hardware, software, and memory); trace bus activity; and many other tasks.

edit more than one file at one. This is very convenient, since the final
program is created by linking several files together.

Figure 29-8 shows an example screen from the VisualDSP debugger. Thisis
an interface to two different types of tools. simulators and emulators.
Simulator s test the code within the personal computer, without even needing
a DSP to be present. This is generally the first debugging step after the
program is written. The simulator mimics the architecture and operation of the
hardware, including: input data streams, interrupts and other I/O. Emulators
(such as the Analog Devices EZ-ICE®) examine the program operation on the
actual hardware. This requires the emulator software (on your PC) to be able
to monitor the electrical signals inside of the DSP. To support this, the
SHARC DSPs feature an IEEE 1140.1 JTAG Test Access Port, allowing an
external device to track the processor's internal functions.

After you have used an evaluation kit and given some thought to purchasing
advanced software tools, you should also consider attending a training class.
These are given by many DSP manufacturers. For instance, Analog Devices
offers a 3 day class, taught several time a year, at several different locations.
These are a great way of learning about DSPs from the experts. Look at the
manufacturer's websites for details.



CHAPTER

28

Digital Signal Processors

Digital Signal Processing is carried out by mathematical operations. In comparison, word
processing and similar programs merely rearrange stored data. This means that computers
designed for business and other general applications are not optimized for algorithms such as
digital filtering and Fourier analysis. Digital Signal Processors are microprocessors specifically
designed to handle Digital Signal Processing tasks. These devices have seen tremendous growth
in the last decade, finding use in everything from cellular telephones to advanced scientific
instruments. In fact, hardware engineers use "DSP" to mean Digital Signal Processor, just as
algorithm developers use "DSP" to mean Digital Signal Processing. This chapter looks at how
DSPs are different from other types of microprocessors, how to decide if a DSP is right for your
application, and how to get started in this exciting new field. In the next chapter we will take a
more detailed ook at one of these sophisticated products: the Analog Devices SHARC® family.

How DSPs are Different from Other Microprocessors

In the 1960s it was predicted that artificial intelligence would revolutionize the
way humans interact with computers and other machines. It was believed that
by the end of the century we would have robots cleaning our houses, computers
driving our cars, and voice interfaces controlling the storage and retrieval of
information. This hasn't happened; these abstract tasks are far more
complicated than expected, and very difficult to carry out with the step-by-step
logic provided by digital computers.

However, the last forty years have shown that computers are extremely capable
in two broad areas, (1) data manipulation, such as word processing and
database management, and (2) mathematical calculation, used in science,
engineering, and Digital Signal Processing. All microprocessors can perform
both tasks; however, it is difficult (expensive) to make a device that is
optimized for both. There are technical tradeoffs in the hardware design, such
as the size of the instruction set and how interrupts are handled. Even
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Data Manipulation

Math Calculation

Tvpical Word processing, database Digital Signal Processing,
ypl. . management, spread sheets, motion control, scientific and
Applications operating sytems, etc. engineering simulations, etc.
Main data movement (A = B) addition (A+B=C)
Operations valuetesting (If A=Bthen...) multiplication (AxB=C)
FIGURE 28-1

Data manipulation versus mathematical calculation. Digital computers are useful for two general
tasks: data manipulation and mathematical calculation. Datamanipulation isbased on moving
data and testing inequalities, while mathematical cal culation uses multiplication and addition.

more important, there are marketing issues involved: development and
manufacturing cost, competitive position, product lifetime, and so on. As a
broad generalization, these factors have made traditional microprocessors, such
as the Pentium®, primarily directed at data manipulation. Similarly, DSPs are
designed to perform the mathematical calculations needed in Digital Signal
Processing.

Figure 28-1 lists the most important differences between these two
categories. Data manipulation involves storing and sorting information.
For instance, consider a word processing program. The basic task is to
store the information (typed in by the operator), organize the information
(cut and paste, spell checking, page layout, etc.), and then retrieve the
information (such as saving the document on a floppy disk or printing it
with a laser printer). These tasks are accomplished by moving data from
one location to another, and testing for inequalities (A=B, A<B, etc.). As
an example, imagine sorting a list of words into alphabetical order. Each
word is represented by an 8 bit number, the ASCII value of the first letter
in the word. Alphabetizing involved rearranging the order of the words
until the ASCII values continually increase from the beginning to the end
of thelist. This can be accomplished by repeating two steps over-and-over
until the alphabetization is complete. First, test two adjacent entries for
being in alphabetical order (IF A>B THEN ...). Second, if the two entries
are not in alphabetical order, switch them so that they are (A=B). When
this two step process is repeated many times on all adjacent pairs, the list
will eventually become al phabetized.

As another example, consider how a document is printed from a word
processor. The computer continually tests the input device (mouse or keyboard)
for the binary code that indicates "print the document." When this code is
detected, the program moves the data from the computer's memory to the
printer. Here we have the same two basic operations: moving data and
inequality testing. While mathematics is occasionally used in this type of
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application, it is infrequent and does not significantly affect the overall
execution speed.

In comparison, the execution speed of most DSP algorithms is limited almost
completely by the number of multiplications and additions required. For
example, Fig. 28-2 shows the implementation of an FIR digital filter, the most
common DSP technique. Using the standard notation, the input signal is
referred to by x[ ], while the output signal is denoted by y[ ]. Our task is to
calculate the sample at location n in the output signal, i.e., y[n]. An FIR filter
performs this calculation by multiplying appropriate samples from the input
signal by a group of coefficients, denoted by: a, a,, a,, a,, -, and then adding
the products. In equation form, y[n] is found by:

y[n] = a,x[n] + a;x[n-1] + a,Xx[n-2] + a;x[n-3] + a,x[n-4] + -

This is simply saying that the input signal has been convolved with a filter
kernel (i.e., an impulse response) consisting of: a,, a;, a,, a,,--. Depending on
the application, there may only be a few coefficients in the filter kernel, or
many thousands. While there is some data transfer and inequality evaluation
in this algorithm, such as to keep track of the intermediate results and control
the loops, the math operations dominate the execution time.

Input Signal, x[ ]

FIGURE 28-2

FIR digital filter. In FIR filtering, each
sample in the output signal, y[n], is found
by multiplying samples from the input
signal, x[n], x[n-1], X[n-2], ..., by thefilter
kernel coefficients, a,, a;, a, a; ..., and
summing the products.

Output signal, y[ ]

y[n]
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In addition to preforming mathematical calculations very rapidly, DSPs must
also have a predictable execution time. Suppose you launch your desktop
computer on some task, say, converting a word-processing document from one
form to another. It doesn't matter if the processing takes ten milliseconds or
ten seconds; you simply wait for the action to be completed before you give the
computer its next assignment.

In comparison, most DSPs are used in applications where the processing is
continuous, not having a defined start or end. For instance, consider an
engineer designing a DSP system for an audio signal, such as a hearing aid.
If the digital signal is being received at 20,000 samples per second, the DSP
must be able to maintain a sustained throughput of 20,000 samples per second.
However, there are important reasons not to make it any faster than necessary.
As the speed increases, so does the cost, the power consumption, the design
difficulty, and so on. This makes an accurate knowledge of the execution time
critical for selecting the proper device, as well as the algorithms that can be

applied.

Circular Buffering

Digital Signal Processors are designed to quickly carry out FIR filters and
similar techniques. To understand the hardware, we must first understand the
algorithms. In this section we will make a detailed list of the steps needed to
implement an FIR filter. In the next section we will see how DSPs are
designed to perform these steps as efficiently as possible.

To start, we need to distinguish between off-line processing and real-time
processing. In off-line processing, the entire input signal resides in the
computer at the same time. For example, a geophysicist might use a
seismometer to record the ground movement during an earthquake. After the
shaking is over, the information may be read into a computer and analyzed in
some way. Another example of off-line processing is medical imaging, such
as computed tomography and MRI. The data set is acquired while the patient
is inside the machine, but the image reconstruction may be delayed until a later
time. The key point is that all of the information is simultaneously available
to the processing program. This is common in scientific research and
engineering, but not in consumer products. Off-line processing is the realm of
personal computers and mainframes.

In real-time processing, the output signal is produced at the same time that the
input signal is being acquired. For example, this is needed in telephone
communication, hearing aids, and radar. These applications must have the
information immediately available, although it can be delayed by a short
amount. For instance, a 10 millisecond delay in a telephone call cannot be
detected by the speaker or listener. Likewise, it makes no difference if a
radar signal is delayed by a few seconds before being displayed to the
operator. Real-time applications input a sample, perform the algorithm, and
output a sample, over-and-over. Alternatively, they may input a group
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MEMORY  STORED MEMORY  STORED
ADDRESS  VALUE ADDRESS  VALUE
20040 20040
20041 -0.225767 <— x[n-3] 20041 -0.225767 <— x[n-4]
20042 | -0.269847 | < x[n-2] 20042 | -0.269847 | < x[n-3]
20043 [ -0.228918 < x[n-1] 20043 | -0.228918 <— x[n-2]
20044 | -0.113940 <— x[n] newest sample 20044 | -0.113940 <— x[n-1]
20045 0.048679 | < x[n-7] oldest sample 20045 [ -0.062222 | <— x[n]  newest sample
20046 0.222977 <— x[n-6] T 20046 0.222977 <— x[n-7] oldest sample
20047 0.371370 <— x[n-5] 20047 0.371370 <— x[n-6] Y
20048 | 0.462791 | < x[n-4] 20048 | 0.462791 | < x[n-5]
20049 20049

a. Circular buffer at some instant

FIGURE 28-3
Circular buffer operation. Circular buffers are used to store the most recent val ues of a continually
updated signal. Thisillustration shows how an eight sample circular buffer might appear at some
instant in time (@), and how it would appear one sample later (b).

b. Circular buffer after next sample

of samples, perform the algorithm, and output a group of samples. Thisisthe
world of Digital Signal Processors.

Now look back at Fig. 28-2 and imagine that this is an FIR filter being
implemented in real-time. To calculate the output sample, we must have access
to a certain number of the most recent samples from the input. For example,
suppose we use eight coefficients in this filter, a), a;, - a,. This means we
must know the value of the eight most recent samples from the input signal,
x[n], X[n-1], -~ x[n-7]. These eight samples must be stored in memory and
continually updated as new samples are acquired. What is the best way to
manage these stored samples? The answer is circular buffering.

Figure 28-3 illustrates an eight sample circular buffer. We have placed this
circular buffer in eight consecutive memory locations, 20041 to 20048. Figure
(a) shows how the eight samples from the input might be stored at one
particular instant in time, while (b) shows the changes after the next sample
isacquired. The idea of circular buffering is that the end of thislinear array is
connected to its beginning; memory location 20041 is viewed as being next to
20048, just as 20044 is next to 20045. You keep track of the array by a
pointer (avariable whose value is an address) that indicates where the most
recent sample resides. For instance, in (a) the pointer contains the address
20044, while in (b) it contains 20045. When a new sample is acquired, it
replaces the oldest sample in the array, and the pointer is moved one address
ahead. Circular buffers are efficient because only one value needs to be
changed when a new sample is acquired.

Four parameters are needed to manage a circular buffer. First, there must be
a pointer that indicates the start of the circular buffer in memory (in this
example, 20041). Second, there must be a pointer indicating the end of the
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TABLE 28-1
FIR filter steps.

array (e.g., 20048), or a variable that holds its length (e.g., 8). Third, the step
size of the memory addressing must be specified. In Fig. 28-3 the step size is
one, for example: address 20043 contains one sample, address 20044 contains
the next sample, and so on. This is frequently not the case. For instance, the
addressing may refer to bytes, and each sample may require two or four bytes
to hold its value. In these cases, the step size would need to be two or four,
respectively.

These three values define the size and configuration of the circular buffer, and
will not change during the program operation. The fourth value, the pointer to
the most recent sample, must be modified as each new sample is acquired. In
other words, there must be program logic that controls how this fourth value is
updated based on the value of the first three values. While this logic is quite
simple, it must be very fast. Thisis the whole point of this discussion; DSPs
should be optimized at managing circular buffers to achieve the highest
possible execution speed.

As an aside, circular buffering is also useful in off-line processing. Consider
a program where both the input and the output signals are completely contained
in memory. Circular buffering isn't needed for a convolution calculation,
because every sample can be immediately accessed. However, many algorithms
are implemented in stages, with an intermediate signal being created between
each stage. For instance, a recursive filter carried out as a series of biquads
operates in this way. The brute force method is to store the entire length of
each intermediate signal in memory. Circular buffering provides another
option: store only those intermediate samples needed for the calculation at
hand. This reduces the required amount of memory, at the expense of a more
complicated algorithm. The important idea is that circular buffers are useful
for off-line processing, but critical for real-time applications.

Now we can look at the steps needed to implement an FIR filter using circular
buffers for both the input signal and the coefficients. Thislist may seem trivial
and overexamined- it's not! The efficient handling of these individual tasksis
what separates a DSP from a traditional microprocessor. For each new sample,
al the following steps need to be taken:

Obtain a sample with the ADC; generate an interrupt
Detect and manage the interrupt
Move the sample into the input signal's circular buffer
Update the pointer for the input signal's circular buffer
Zero the accumulator
. Control the loop through each of the coefficients
7. Fetch the coefficient from the coefficient's circular buffer
8. Update the pointer for the coefficient's circular buffer
9. Fetch the sample from the input signal's circular buffer
10. Update the pointer for the input signal's circular buffer
11. Multiply the coefficient by the sample
12. Add the product to the accumulator
13. Move the output sample (accumulator) to a holding buffer
14. Move the output sample from the holding buffer to the DAC

ok wNE
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The goal is to make these steps execute quickly. Since steps 6-12 will be
repeated many times (once for each coefficient in the filter), special attention
must be given to these operations. Traditional microprocessors must generally
carry out these 14 stepsin serial (one after another), while DSPs are designed
to perform them in parallel. In some cases, al of the operations within the
loop (steps 6-12) can be completed in a single clock cycle. Let's ook at the
internal architecture that allows this magnificent performance.

Architecture of the Digital Signal Processor

One of the biggest bottlenecks in executing DSP algorithms is transferring
information to and from memory. This includes data, such as samples from the
input signal and the filter coefficients, as well as program instructions, the
binary codes that go into the program sequencer. For example, suppose we
need to multiply two numbers that reside somewhere in memory. To do this,
we must fetch three binary values from memory, the numbers to be multiplied,
plus the program instruction describing what to do.

Figure 28-4a shows how this seemingly simple task is done in a traditional
microprocessor. Thisis often called aVon Neumann architecture, after the
brilliant American mathematician John Von Neumann (1903-1957). Von
Neumann guided the mathematics of many important discoveries of the early
twentieth century. His many achievements include: developing the concept of
a stored program computer, formalizing the mathematics of quantum mechanics,
and work on the atomic bomb. If it was new and exciting, Von Neumann was
there!

As shown in (a), a Von Neumann architecture contains a single memory and a
single bus for transferring data into and out of the central processing unit
(CPU). Multiplying two numbers requires at least three clock cycles, one to
transfer each of the three numbers over the bus from the memory to the CPU.
We don't count the time to transfer the result back to memory, because we
assume that it remains in the CPU for additional manipulation (such as the sum
of products in an FIR filter). The Von Neumann design is quite satisfactory
when you are content to execute all of the required tasks in serial. In fact,
most computers today are of the Von Neumann design. We only need other
architectures when very fast processing is required, and we are willing to pay
the price of increased complexity.

This leads us to the Harvard architecture, shown in (b). Thisis named for
the work done at Harvard University in the 1940s under the leadership of
Howard Aiken (1900-1973). As shown in this illustration, Aiken insisted on
separate memories for data and program instructions, with separate buses for
each. Since the buses operate independently, program instructions and data can
be fetched at the same time, improving the speed over the single bus design.
Most present day DSPs use this dual bus architecture.

Figure (c) illustrates the next level of sophistication, the Super Harvard
Architecture. This term was coined by Analog Devices to describe the



510

The Scientist and Engineer's Guide to Digital Sgnal Processing

internal operation of their ADSP-2106x and new ADSP-211xx families of
Digital Signal Processors. These are called SHARC® DSPs, a contraction of
the longer term, Super Harvard ARChitecture. The ideais to build upon the
Harvard architecture by adding features to improve the throughput. While the
SHARC DSPs are optimized in dozens of ways, two areas are important
enough to be included in Fig. 28-4c: an instruction cache, and an 1/0
controller.

First, let's look at how the instruction cache improves the performance of the
Harvard architecture. A handicap of the basic Harvard design is that the data
memory bus is busier than the program memory bus. When two numbers are
multiplied, two binary values (the numbers) must be passed over the data
memory bus, while only one binary value (the program instruction) is passed
over the program memory bus. To improve upon this situation, we start by
relocating part of the "data" to program memory. For instance, we might place
the filter coefficients in program memory, while keeping the input signal in data
memory. (This relocated data is called "secondary data’ in the illustration).
At first glance, this doesn't seem to help the situation; now we must transfer
one value over the data memory bus (the input signal sample), but two values
over the program memory bus (the program instruction and the coefficient). In
fact, if we were executing random instructions, this situation would be no better
at all.

However, DSP algorithms generally spend most of their execution time in
loops, such as instructions 6-12 of Table 28-1. This means that the same set
of program instructions will continually pass from program memory to the
CPU. The Super Harvard architecture takes advantage of this situation by
including an instruction cache in the CPU. This is a small memory that
contains about 32 of the most recent program instructions. The first time
through a loop, the program instructions must be passed over the program
memory bus. This results in slower operation because of the conflict with the
coefficients that must also be fetched along this path. However, on additional
executions of the loop, the program instructions can be pulled from the
instruction cache. This means that all of the memory to CPU information
transfers can be accomplished in a single cycle: the sample from the input
signal comes over the data memory bus, the coefficient comes over the program
memory bus, and the program instruction comes from the instruction cache. In
the jargon of the field, this efficient transfer of datais called a high memory-
access bandwidth.

Figure 28-5 presents a more detailed view of the SHARC architecture,
showing the I/O controller connected to data memory. This is how the
signals enter and exit the system. For instance, the SHARC DSPs provides
both serial and parallel communications ports. These are extremely high
speed connections. For example, at a 40 MHz clock speed, there are two
serial ports that operate at 40 Mbits/second each, while six parallel ports
each provide a 40 Mbytes/second data transfer. When all six parallel
ports are used together, the data transfer rate is an incredible 240
M bytes/second.
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address bus

data bus
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b. Harvard Architecture ( dual memory )

Program PM address bus CPU DM address bus Data
Memory ] —— Memory
instructions only PM data bus DM data bus dataonly

¢. Super Harvard Architecture (dual memory, instruction cache, I/0 controller )

Program PM address bus CPU DM address bus Data
Memory — 1 Memory
Sevonday s [ M Gabis )] Instruction DMdaabis M dataonly
FIGURE 28-4 1/0
Microprocessor architecture. TheVVon Neumann architecture Controller
uses a single memory to hold both data and instructions. In
comparison, the Harvard architecture uses separate memories
for data and instructions, providing higher speed. The Super @
Harvard Architecture improves upon the Harvard design by data

adding an instruction cache and a dedicated 1/0 controller.
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This is fast enough to transfer the entire text of this book in only 2
milliseconds! Just as important, dedicated hardware allows these data streams
to be transferred directly into memory (Direct Memory Access, or DMA),
without having to pass through the CPU's registers. In other words, tasks 1 &
14 on our list happen independently and simultaneously with the other tasks;
no cycles are stolen from the CPU. The main buses (program memory bus and
data memory bus) are also accessible from outside the chip, providing an
additional interface to off-chip memory and peripherals. This allows the
SHARC DSPs to use a four Gigaword (16 Gbyte) memory, accessible at 40
Mwords/second (160 Mbytes/second), for 32 bit data. Wow!

This type of high speed I/O is a key characteristic of DSPs. The overriding
goal isto move the data in, perform the math, and move the data out before the
next sampleis available. Everything elseis secondary. Some DSPs have on-
board analog-to-digital and digital-to-analog converters, a feature called mixed
signal. However, al DSPs can interface with external converters through
serial or parallel ports.
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Now let's look inside the CPU. At the top of the diagram are two blocks
labeled Data Address Generator (DAG), one for each of the two
memories. These control the addresses sent to the program and data
memories, specifying where the information is to be read from or written to.
In simpler microprocessors this task is handled as an inherent part of the
program sequencer, and is quite transparent to the programmer. However,
DSPs are designed to operate with circular buffers, and benefit from the
extra hardware to manage them efficiently. This avoids needing to use
precious CPU clock cycles to keep track of how the data are stored. For
instance, in the SHARC DSPs, each of the two DAGs can control eight
circular buffers. This means that each DAG holds 32 variables (4 per
buffer), plus the required logic.

Why so many circular buffers? Some DSP agorithms are best carried out in
stages. For instance, IIR filters are more stable if implemented as a cascade
of biquads (a stage containing two poles and up to two zeros). Multiple stages
require multiple circular buffers for the fastest operation. The DAGs in the
SHARC DSPs are also designed to efficiently carry out the Fast Fourier
transform. In this mode, the DAGs are configured to generate bit-rever sed
addresses into the circular buffers, a necessary part of the FFT algorithm. In
addition, an abundance of circular buffers greatly simplifies DSP code
generation- both for the human programmer as well as high-level language
compilers, such as C.

The data register section of the CPU is used in the same way as in traditional
microprocessors. In the ADSP-2106x SHARC DSPs, there are 16 general
purpose registers of 40 bits each. These can hold intermediate calculations,
prepare data for the math processor, serve as a buffer for data transfer, hold
flags for program control, and so on. If needed, these registers can also be
used to control loops and counters; however, the SHARC DSPs have extra
hardware registers to carry out many of these functions.

The math processing is broken into three sections, a multiplier, an
arithmetic logic unit (ALU), and a barrel shifter. The multiplier takes
the values from two registers, multiplies them, and places the result into
another register. The ALU performs addition, subtraction, absolute value,
logical operations (AND, OR, XOR, NOT), conversion between fixed and
floating point formats, and similar functions. Elementary binary operations
are carried out by the barrel shifter, such as shifting, rotating, extracting
and depositing segments, and so on. A powerful feature of the SHARC
family is that the multiplier and the ALU can be accessed in parallel. In a
single clock cycle, data from registers 0-7 can be passed to the multiplier,
data from registers 8-15 can be passed to the ALU, and the two results
returned to any of the 16 registers.

There are a'so many important features of the SHARC family architecture that
aren't shown in this simplified illustration. For instance, an 80 bit
accumulator is built into the multiplier to reduce the round-off error
associated with multiple fixed-point math operations. Another interesting
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PM Data DM Data
< PM address bus Address Address DM address bus >
Generator Generator
Program @ @ Data
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. . Program Sequencer
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—1  Shifter =1 ADC, DAC, etc)

FIGURE 28-5

Typical DSP architecture. Digital Signal Processors are designed to implement tasksin parallel. This
simplified diagram is of the Analog Devices SHARC DSP. Compare this architecture with the tasks
needed to implement an FIR filter, as listed in Table 28-1. All of the steps within the loop can be
executed in asingle clock cycle.

feature is the use of shadow registers for all the CPU's key registers. These
are duplicate registers that can be switched with their counterpartsin asingle
clock cycle. They are used for fast context switching, the ability to handle
interrupts quickly. When an interrupt occurs in traditional microprocessors, all
the internal data must be saved before the interrupt can be handled. This
usually involves pushing all of the occupied registers onto the stack, one at a
time. In comparison, an interrupt in the SHARC family is handled by moving
the internal data into the shadow registers in a single clock cycle. When the
interrupt routine is completed, the registers are just as quickly restored. This
feature allows step 4 on our list (managing the sample-ready interrupt) to be
handled very quickly and efficiently.

Now we come to the critical performance of the architecture, how many of the
operations within the loop (steps 6-12 of Table 28-1) can be carried out at the
same time. Because of its highly parallel nature, the SHARC DSP can
simultaneously carry out all of these tasks. Specifically, within a single clock
cycle, it can perform a multiply (step 11), an addition (step 12), two data
moves (steps 7 and 9), update two circular buffer pointers (steps 8 and 10), and
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control the loop (step 6). There will be extra clock cycles associated with
beginning and ending the loop (steps 3, 4, 5 and 13, plus moving initial values
into place); however, these tasks are also handled very efficiently. If the loop
is executed more than a few times, this overhead will be negligible. As an
example, suppose you write an efficient FIR filter program using 100
coefficients. You can expect it to require about 105 to 110 clock cycles per
sample to execute (i.e., 100 coefficient loops plus overhead). This is very
impressive; a traditional microprocessor requires many thousands of clock
cycles for this algorithm.

Fixed versus Floating Point

Digital Signal Processing can be divided into two categories, fixed point and
floating point. These refer to the format used to store and manipulate
numbers within the devices. Fixed point DSPs usually represent each number
with a minimum of 16 bits, although a different length can be used. For
instance, Motorola manufactures a family of fixed point DSPs that use 24 hits.
There are four common ways that these 26 = 65,536 possible bit patterns can
represent a number. In unsigned integer, the stored number can take on any
integer value from 0 to 65,535. Similarly, signed integer uses two's
complement to make the range include negative numbers, from -32,768 to
32,767. With unsigned fraction notation, the 65,536 levels are spread
uniformly between 0 and 1. Lastly, the signed fraction format allows
negative numbers, equally spaced between -1 and 1.

In comparison, floating point DSPs typically use a minimum of 32 bits to
store each value. This results in many more bit patterns than for fixed
point, 2%2 = 4,294,967,296 to be exact. A key feature of floating point notation
is that the represented numbers are not uniformly spaced. In the most common
format (ANSI/IEEE Std. 754-1985), the largest and smallest numbers are
+3.4x10% and +1.2x10 %, respectively. The represented values are unequally
spaced between these two extremes, such that the gap between any two
numbers is about ten-million times smaller than the value of the numbers.
This is important because it places large gaps between large numbers, but small
gaps between small numbers. Floating point notation is discussed in more
detail in Chapter 4.

All floating point DSPs can also handle fixed point numbers, a necessity to
implement counters, loops, and sighals coming from the ADC and going to the
DAC. However, this doesn't mean that fixed point math will be carried out as
quickly as the floating point operations; it depends on the internal architecture.
For instance, the SHARC DSPs are optimized for both floating point and fixed
point operations, and executes them with equal efficiency. For this reason, the
SHARC devices are often referred to as "32-bit DSPs," rather than just
"Floating Point."

Figure 28-6 illustrates the primary trade-offs between fixed and floating point
DSPs. In Chapter 3 we stressed that fixed point arithmetic is much
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Precision Product Cost
FIGURE 28-6 Dynamic Range
Fixed versus floating point. Fixed point DSPs Development Time

are generally cheaper, while floating point
devices have better precision, higher dynamic
range, and a shorter development cycle.

faster than floating point in general purpose computers. However, with DSPs
the speed is about the same, aresult of the hardware being highly optimized for
math operations. The internal architecture of a floating point DSP is more
complicated than for afixed point device. All the registers and data buses must
be 32 bits wide instead of only 16; the multiplier and ALU must be able to
quickly perform floating point arithmetic, the instruction set must be larger (so
that they can handle both floating and fixed point numbers), and so on.
Floating point (32 bit) has better precision and a higher dynamic range than
fixed point (16 bit) . In addition, floating point programs often have a shorter
development cycle, since the programmer doesn't generally need to worry about
issues such as overflow, underflow, and round-off error.

On the other hand, fixed point DSPs have traditionally been cheaper than
floating point devices. Nothing changes more rapidly than the price of
electronics; anything you find in a book will be out-of-date before it is
printed. Nevertheless, cost is a key factor in understanding how DSPs are
evolving, and we need to give you a general idea. When this book was
completed in 1999, fixed point DSPs sold for between $5 and $100, while
floating point devices were in the range of $10 to $300. This differencein
cost can be viewed as a measure of the relative complexity between the
devices. If you want to find out what the prices are today, you need to ook
today.

Now let's turn our attention to performance; what can a 32-bit floating point
system do that a 16-bit fixed point can't? The answer to this question is
signal-to-noiseratio. Suppose we store a number in a 32 bit floating point
format. As previously mentioned, the gap between this number and its adjacent
neighbor is about one ten-millionth of the value of the number. To store the
number, it must be round up or down by a maximum of one-half the gap size.
In other words, each time we store a number in floating point notation, we add
noise to the signal.

The same thing happens when a number is stored as a 16-bit fixed point value,
except that the added noise is much worse. This is because the gaps between
adjacent numbers are much larger. For instance, suppose we store the number
10,000 as a signed integer (running from -32,768 to 32,767). The gap between
numbers is one ten-thousandth of the value of the number we are storing. If we
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want to store the number 1000, the gap between numbers is only one one-
thousandth of the value.

Noise in signals is usually represented by its standard deviation. This was
discussed in detail in Chapter 2. For here, the important fact is that the
standard deviation of this quantization noise is about one-third of the gap
size. This means that the signal-to-noise ratio for storing a floating point
number is about 30 million to one, while for a fixed point number it is only
about ten-thousand to one. In other words, floating point has roughly 30,000
times less quantization noise than fixed point.

This brings up an important way that DSPs are different from traditional
microprocessors.  Suppose we implement an FIR filter in fixed point. To do
this, we loop through each coefficient, multiply it by the appropriate sample
from the input signal, and add the product to an accumulator. Here's the
problem. In traditional microprocessors, this accumulator is just another 16 bit
fixed point variable. To avoid overflow, we need to scale the values being
added, and will correspondingly add quantization noise on each step. In the
worst case, this quantization noise will simply add, greatly lowering the signal-
to-noise ratio of the system. For instance, in a 500 coefficient FIR filter, the
noise on each output sample may be 500 times the noise on each input sample.
The signal-to-noise ratio of ten-thousand to one has dropped to a ghastly
twenty to one. Although this is an extreme case, it illustrates the main point:
when many operations are carried out on each sample, it's bad, really bad. See
Chapter 3 for more details.

DSPs handle this problem by using an extended precision accumulator.
Thisis a special register that has 2-3 times as many bits as the other memory
locations. For example, in a 16 bit DSP it may have 32 to 40 bits, while in the
SHARC DSPs it contains 80 bits for fixed point use. This extended range
virtually eliminates round-off noise while the accumulation is in progress. The
only round-off error suffered is when the accumulator is scaled and stored in
the 16 bit memory. This strategy works very well, although it does limit how
some algorithms must be carried out. In comparison, floating point has such
low quantization noise that these techniques are usually not necessary.

In addition to having lower quantization noise, floating point systems are also
easier to develop algorithms for. Most DSP techniques are based on repeated
multiplications and additions. In fixed point, the possibility of an overflow or
underflow needs to be considered after each operation. The programmer needs
to continually understand the amplitude of the numbers, how the quantization
errors are accumulating, and what scaling needs to take place. In comparison,
these issues do not arise in floating point; the numbers take care of themselves
(except in rare cases).

To give you a better understanding of this issue, Fig. 28-7 shows a table from
the SHARC user manual. This describes the ways that multiplication can be
carried out for both fixed and floating point formats. First, look at how
floating point numbers can be multiplied; there is only one way! That
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FIGURE 28-7

Fixed versusfloating point instructions. These are the multiplication instructionsused in
the SHARC DSPs. While only a single command is needed for floating point, many
options are needed for fixed point. See thetext for an explanation of these options.

is, Fn = Fx * Fy, where Fn, Fx, and Fy are any of the 16 data registers. It
could not be any simpler. In comparison, look at all the possible commands for
fixed point multiplication. These are the many options needed to efficiently
handle the problems of round-off, scaling, and format.

In Fig. 28-7, Rn, Rx, and Ry refer to any of the 16 data registers, and MRF
and MRB are 80 hit accumulators. The vertical lines indicate options. For
instance, the top-left entry in this table means that all the following are valid
commands. Rn = Rx * Ry, MRF = Rx * Ry, and MRB = Rx * Ry. In other
words, the value of any two registers can be multiplied and placed into another
register, or into one of the extended precision accumulators. This table also
shows that the numbers may be either signed or unsigned (S or U), and may be
fractional or integer (F or I). The RND and SAT options are ways of
controlling rounding and register overflow.
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There are other details and options in the table, but they are not important for
our present discussion. The important idea is that the fixed point programmer
must understand dozens of ways to carry out the very basic task of
multiplication. In contrast, the floating point programmer can spend his time
concentrating on the algorithm.

Given these tradeoffs between fixed and floating point, how do you choose
which to use? Here are some things to consider. First, look at how many bits
are used in the ADC and DAC. In many applications, 12-14 bits per sample
is the crossover for using fixed versus floating point. For instance, television
and other video signals typically use 8 hit ADC and DAC, and the precision of
fixed point is acceptable. In comparison, professional audio applications can
sample with as high as 20 or 24 bits, and almost certainly need floating point
to capture the large dynamic range.

The next thing to look at is the complexity of the algorithm that will be run.
If it is relatively simple, think fixed point; if it is more complicated, think
floating point. For example, FIR filtering and other operations in the time
domain only require a few dozen lines of code, making them suitable for fixed
point. In contrast, frequency domain algorithms, such as spectral analysis and
FFT convolution, are very detailed and can be much more difficult to program.
While they can be written in fixed point, the development time will be greatly
reduced if floating point is used.

Lastly, think about the money: how important is the cost of the product, and
how important is the cost of the development? When fixed point is chosen, the
cost of the product will be reduced, but the development cost will probably be
higher due to the more difficult algorithms. In the reverse manner, floating
point will generally result in a quicker and cheaper development cycle, but a
more expensive final product.

Figure 28-8 shows some of the major trends in DSPs. Figure (@) illustrates the
impact that Digital Signal Processors have had on the embedded market. These
are applications that use a microprocessor to directly operate and control some
larger system, such as a cellular telephone, microwave oven, or automotive
instrument display panel. The name "microcontroller” is often used in
referring to these devices, to distinguish them from the microprocessors used
in personal computers. As shown in (a), about 38% of embedded designers
have already started using DSPs, and another 49% are considering the switch.
The high throughput and computational power of DSPs often makes them an
ideal choice for embedded designs.

As illustrated in (b), about twice as many engineers currently use fixed
point as use floating point DSPs. However, this depends greatly on the
application. Fixed point is more popular in competitive consumer products
where the cost of the electronics must be kept very low. A good example
of thisis cellular telephones. When you are in competition to sell millions
of your product, a cost difference of only a few dollars can be the difference
between success and failure. In comparison, floating point is more common
when greater performance is needed and cost is not important. For
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FIGURE 28-8

Major trends in DSPs. Asillustrated in (a), about 38% of embedded designers have already switched from
conventional microprocessors to DSPs, and another 49% are considering the change. In (b), about twice as
many engineers use fixed point as use floating point DSPs. Thisis mainly driven by consumer products that
must have low cost electronics, such as cellular telephones. However, as shown in (c), floating point is the
fastest growing segment; over one-half of engineers currently using 16 bit devices plan to migrate to floating
point DSPs

instance, suppose you are designing a medical imaging system, such a
computed tomography scanner. Only afew hundred of the model will ever
be sold, at a price of several hundred-thousand dollars each. For this
application, the cost of the DSP is insignificant, but the performance is
critical. In spite of the larger number of fixed point DSPs being used, the
floating point market is the fastest growing segment. As shown in (c), over
one-half of engineers using 16-bits devices plan to migrate to floating point
at some time in the near future.

Before leaving this topic, we should reemphasi ze that floating point and fixed
point usually use 32 bits and 16 bits, respectively, but not always. For
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instance, the SHARC family can represent numbers in 32-bit fixed point, a
mode that is common in digital audio applications. This makes the 232
guantization levels spaced uniformly over a relatively small range, say,
between -1 and 1. In comparison, floating point notation places the 23
quantization levels logarithmically over a huge range, typically +3.4x10%.
This gives 32-bit fixed point better precision, that is, the quantization error on
any one sample will be lower. However, 32-bit floating point has a higher
dynamic range, meaning there is a greater difference between the largest
number and the smallest number that can be represented.

C versus Assembly

DSPs are programmed in the same languages as other scientific and engineering
applications, usually assembly or C. Programs written in assembly can execute
faster, while programs written in C are easier to develop and maintain. In
traditional applications, such as programs run on personal computers and
mainframes, C is ailmost always the first choice. If assembly is used at all, it
is restricted to short subroutines that must run with the utmost speed. Thisis
shown graphically in Fig. 28-9a; for every traditional programmer that works
in assembly, there are approximately ten that use C.

However, DSP programs are different from traditional software tasks in two
important respects. First, the programs are usually much shorter, say, one-
hundred lines versus ten-thousand lines. Second, the execution speed is
often a critical part of the application. After all, that's why someone uses
aDSP in thefirst place, for its blinding speed. These two factors motivate
many software engineers to switch from C to assembly for programming
Digital Signal Processors. Thisisillustrated in (b); nearly as many DSP
programmers use assembly as use C.

Figure (c) takes this further by looking at the revenue produced by DSP
products. For every dollar made with a DSP programmed in C, two dollars are
made with a DSP programmed in assembly. The reason for this is simple;
money is made by outperforming the competition. From a pure performance
standpoint, such as execution speed and manufacturing cost, assembly almost
always has the advantage over C. For instance, C code usually requires a
larger memory than assembly, resulting in more expensive hardware. However,
the DSP market is continually changing. As the market grows, manufacturers
will respond by designing DSPs that are optimized for programming in C. For
instance, C is much more efficient when there is a large, general purpose
register set and a unified memory space. These future improvements will
minimize the difference in execution time between C and assembly, and allow
C to be used in more applications.

To better understand this decision between C and assembly, let's look at
atypical DSP task programmed in each language. The example we will
use is the calculation of the dot product of the two arrays, x[] and y[].
This is a simple mathematical operation, we multiply each coefficient in one
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Programming in C versus assembly. As
shown in (a), only about 10% of traditional
programmers (such as those that work on
personal computers and mainframes) use
assembly. However, as illustrated in (b),
assembly is much more common in Digital
Signal Processors. This is because DSP
programs must operate as fast as possible,
and are usually quite short. Figure (c) shows
that assembly is even more common in
products that generate a high revenue.

‘ c. DSP Revenue

Assembly

array by the corresponding coefficient in the other array, and sum the
products, i.e. X[O] xy[0] + x[1]xy[1] + X[2] xy[2] + --. This should look very
familiar; it is the fundamental operation in an FIR filter. That is, each
sample in the output signal is found by multiplying stored samples from the
input signal (in one array) by the filter coefficients (in the other array), and
summing the products.

Table 28-2 shows how the dot product is calculated in a C program. In lines
001-004 we define the two arrays, x[] and y[ ], to be 20 elements long.
We also define result, the variable that holds the calculated dot

001 #define LEN 20
002 float dm x[LENT];
003 float pm y[LEN];
004 float result;
TABLE 28-2 005 ,
Dot product in C. This progam calculates 006|  main()
the dot product of two arrays, x[ ] and y[ ], 007
and stores the result in the variable, result. 008 {
009 intn;
010 float s;
011 for (n=0;n<LEN;n++)
012 s+=x[n]*y[n];
013 result =s
014| '}
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product at the completion of the program. Line 011 controls the 20 loops
needed for the calculation, using the variable n as a loop counter. The only
statement within the loop is line 012, which multiplies the corresponding
coefficients from the two arrays, and adds the product to the accumulator
variable, s. (If you are not familiar with C, the statement: s+ = x[n] * y[n]
means the same as. s = s+ x[n] * y[n] ). After the loop, the value in the
accumulator, s, istransferred to the output variable, result, in line 013.

A key advantage of using a high-level language (such as C, Fortran, or Basic)
is that the programmer does not need to understand the architecture of the
microprocessor being used; knowledge of the architecture is left to the
compiler. For instance, this short C program uses several variables: n, s,
result, plus the arrays: x[ ] and y[]. All of these variables must be assigned
a "home" in hardware to keep track of their value. Depending on the
microprocessor, these storage locations can be the general purpose data
registers, locations in the main memory, or special registers dedicated to
particular functions. However, the person writing a high-level program knows
little or nothing about this memory management; this task has been delegated
to the software engineer who wrote the compiler. The problem is, these two
people have never met; they only communicate through a set of predefined
rules. High-level languages are easier than assembly because you give half the
work to someone else. However, they are less efficient because you aren't
guite sure how the delegated work is being carried out.

In comparison, Table 28-3 shows the dot product program written in
assembly for the SHARC DSP. The assembly language for the Analog
Devices DSPs (both their 16 bit fixed-point and 32 bit SHARC devices) are
known for their simple algebraic-like syntax. While we won't go through all
the details, here is the general operation. Notice that everything relates to
hardware; there are no abstract variables in this code, only data registers
and memory locations.

Each semicolon represents a clock cycle. The arrays x[ ] and y[ ] are held in
circular buffers in the main memory. In lines 001 and 002, registers i4

i12=_y; /* 112 points to beginning of y[ ] */
i4=_x; /* 14 points to beginning of x[ ] */
Ientr = 20, do (pc,4) until Ice; /* loop for the 20 array entries */
f2 = dm(i4,m6); /* load the x[ ] value into register f2 */
f4 = pm(i12,m14); /* load the y[ ] value into register f4 */
f8 = f2*f4; /* multiply the two values, storein f8 */
f12 =18 + f12; /* add the product to the accumulator in f12 */
dm(_result) =f12; /* write the accumulator to memory */
TABLE 28-3

Dot product in assembly (unoptimized). This program calculates the dot product of the
two arrays, X[ ] and y[ ], and storesthe result in the variable, result. Thisis assembly code
for the Analog Devices SHARC DSPs. Seethetext for details.
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i12=_y; /* 112 points to beginning of y[ ] */
i4=_x; /* 14 points to beginning of x[ ] */
f2 = dm(i4,m6), f4 = pm(i12,m14) /* prime the registers */
f8 = f2*f4, f2 = dm(i4,m6), f4 = pm(i12,m14);

Ientr = 18, do (pc,1) until Ice; /* highly efficient main loop */

f12 = f8 + f12, f8 = f2*f4, 2 = dm(i4,m6), f4 = pm(k12,m14);

f12 =8 + f12, f8 = f2*f4; /* complete the last loop */

f12 =18 + f12;

dm(_result) =f12; /* store the result in memory */
TABLE 28-4

Dot product in assembly (optimized). Thisis an optimized version of the program in
TABLE 28-2, designed to take advantage of the SHARC's highly parallel architecture.

and i12 are pointed to the starting locations of these arrays. Next, we execute
20 loop cycles, as controlled by line 004. The format for this statement takes
advantage of the SHARC DSP's zero-overhead looping capability. In other
words, all of the variables needed to control the loop are held in dedicated
hardware registers that operate in parallel with the other operations going on
inside the microprocessor. In this case, the register: Icntr (loop counter) is
loaded with an initial value of 20, and decrements each time the loop is
executed. The loop isterminated when lcntr reaches a value of zero (indicated
by the statement: Ice, for "loop counter expired"). The loop encompasses lines
004 to 008, as controlled by the statement (pc,4). That is, the loop ends four
lines after the current program counter.

Inside the loop, line 005 loads the value from X[ ] into data register f2, while
line 006 loads the value from y[ ] into data register f4. The symbols "dm" and
"pm" indicate that the values are fetched over the "data memory" bus and
"program memory" bus, respectively. The variables; i4, m6, i12, and m14 are
registers in the data address generators that manage the circular buffers holding
x[] and y[]. Thetwo valuesin f2 and f4 are multiplied in line 007, and the
product stored in data register 8. In line 008, the product in f8 is added to the
accumulator, data register f12. After the loop is completed, the accumulator
in f12 is transferred to memory.

This program correctly calculates the dot product, but it does not take
advantage of the SHARC highly parallel architecture. Table 28-4 shows this
program rewritten in a highly optimized form, with many operations being
carried out in parallel. First notice that line 007 only executes 18 loops, rather
than 20. Also notice that this loop only contains a single line (008), but that
this line contains multiple instructions. The strategy is to make the loop as
efficient as possible, in this case, a single line that can be executed in asingle
clock cycle. To do this, we need to have a small amount of code to "prime" the
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registers on the first loop (lines 004 and 005), and another small section of
code to finish the last loop (lines 010 and 011).

To understand how this works, study line 008, the only statement inside the
loop. In this single statement, four operations are being carried out in parallel:
(1) the value for x[ ] is moved from a circular buffer in program memory and
placed in f2; (2) the value for y[ ] is being moved from a circular buffer in
data memory and placed in f4; (3) the previous values of f2 and f4 are
multiplied and placed in f8; and (4) the previous value in f8 is added to the
accumulator in f12.

For example, the fifth time that line 008 is executed, x[7] and y[7] are fetched
from memory and stored in f2 and f4. At the same time, the values for x[6]
and y[6] (that were in f2 and f4 at the start of this cycle) are multiplied and
placed in f8. In addition, the value of X[5] xy[5] (that was in f8 at the start of
this cycle) is added to the value of f12.

Let's compare the number of clock cycles required by the unoptimized and
the optimized programs. Keep in mind that there are 20 loops, with four
actions being required in each loop. The unoptimized program requires 80
clock cycles to carry out the actions within the loops, plus 5 clock cycles
of overhead, for atotal of 85 clock cycles. In comparison, the optimized
program conducts 18 loops in 18 clock cycles, but requires 11 clock cycles
of overhead to prime the registers and complete the last loop. This results
in atotal execution time of 29 clock cycles, or about three times faster than
the brute force method.

Here is the big question: How fast does the C program execute relative to the
assembly code? When the program in Table 28-2 is compiled, does the
executable code resemble our efficient or inefficient assembly example? The
answer is that the compiler generates the efficient code. However, it is
important to realize that the dot product is a very simple example. The
compiler has a much more difficult time producing optimized code when the
program becomes more complicated, such as multiple nested loops and erratic
jumps to subroutines. If you are doing something straightforward, expect the
compiler to provide you a nearly optimal solution. If you are doing something
strange or complicated, expect that an assembly program will execute
significantly faster than one written in C. In the worst case, think a factor of
2-3. As previously mentioned, the efficiency of C versus assembly depends
greatly on the particular DSP being used. Floating point architectures can
generaly be programmed more efficiently than fixed-point devices when using
high-level languages such as C. Of course, the proper software tools are
important for this, such as a debugger with profiling features that help you
understand how long different code segments take to execute.

There is also away you can get the best of both worlds: write the program
in C, but use assembly for the critical sections that must execute quickly.
This is one reason that C is so popular in science and engineering. It operates
as a high-level language, but also allows you to directly manipulate
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Assembly versus C. Programsin C are Fast Development
more flexible and quicker to develop. In
comparison, programsin assembly often
have better performance; they run faster

and use less memory, resulting in lower
cost. Y d Assembly

the hardware if you so desire. Even if you intend to program only in C, you
will probably need some knowledge of the architecture of the DSP and the
assembly instruction set.  For instance, look back at lines 002 and 003 in
Table 28-2, the dot product program in C. The "dm" means that x[ ] isto be
stored in data memory, while the "pm" indicates that y[ ] will reside in
program memory. Even though the program is written in a high level language,
a basic knowledge of the hardware is still required to get the best performance
from the device.

Which language is best for your application? It depends on what is more
important to you. |f you need flexibility and fast development, choose C. On
the other hand, use assembly if you need the best possible performance. As
illustrated in Fig. 28-10, this is a tradeoff you are forced to make. Here are
some things you should consider.

(d How complicated is the program? |If it is large and intricate, you will
probably want to use C. If it is small and simple, assembly may be a good
choice.

 Are you pushing the maximum speed of the DSP? If so, assembly will
give you the last drop of performance from the device. For less demanding
applications, assembly has little advantage, and you should consider using
C.

1 How many programmers will be working together? If the project is large
enough for more than one programmer, lean toward C and use in-line
assembly only for time critical segments.

O Which is more important, product cost or development cost? If it is
product cost, choose assembly; if it is development cost, choose C.

O What is your background? If you are experienced in assembly (on other
microprocessors), choose assembly for your DSP. |If your previous work
isin C, choose C for your DSP.

d What does the DSP's manufacturer suggest you use?

This last item is very important. Suppose you ask a DSP manufacturer which
language to use, and they tell you: "Either C or assembly can be used, but we
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recommend C." You had better take their advicel What they are really saying
is: "Our DSP is so difficult to program in assembly that you will need 6
months of training to use it." On the other hand, some DSPs are easy to
program in assembly. For instance, the Analog Devices products are in this
category. Just ask their engineers; they are very proud of this.

One of the best ways to make decisions about DSP products and software is to
speak with engineers who have used them. Ask the manufacturers for
references of companies using their products, or search the web for people you
can e-mail. Don't be shy; engineers love to give their opinions on products they
have used. They will be flattered that you asked.

How Fast are DSPs?

The primary reason for using a DSP instead of atraditional microprocessor
is speed, the ability to move samples into the device, carry out the needed
mathematical operations, and output the processed data. This brings up the
guestion: How fast are DSPs? The usual way of answering this question is
benchmarks, methods for expressing the speed of a microprocessor as a
number. For instance, fixed point systems are often quoted in MIPS
(million integer operations per second). Likewise, floating point devices
can be specified in MFL OPS (million floating point operations per second).

One hundred and fifty years ago, British Prime Minister Benjamin Disragli
declared that there are three types of lies: lies, damn lies, and statistics. If
Disraeli were alive today and working with microprocessors, he would add
benchmarks as a fourth category. The idea behind benchmarks is to provide
a head-to-head comparison to show which is the best device. Unfortunately,
this often fails in practicality, because different microprocessors excel in
different areas. Imagine asking the question: Which is the better car, a
Cadillac or a Ferrari? It depends on what you want it for!

Confusion about benchmarks is aggravated by the competitive nature of the
electronics industry. Manufacturers want to show their products in the best
light, and they will use any ambiguity in the testing procedure to their
advantage. There is an old saying in electronics. "A specification writer can
get twice as much performance from a device as an engineer." These
people aren't being untruthful, they are just paid to have good imaginations.
Benchmarks should be viewed as a tool for a complicated task. If you are
inexperienced in using this tool, you may come to the wrong conclusion. A
better approach is to look for specific information on the execution speed
of the algorithms you plan to carry out. For instance, if your application
calls for an FIR filter, look for the exact number of clock cycles it takes for
the device to execute this particular task.

Using this strategy, let's look at the time required to execute various
algorithms on our featured DSP, the Analog Devices SHARC family. Keep
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The speed of DSPs. The throughput of a particular DSP algorithm can be found by
dividing the clock rate by the required number of clock cycles per sample. Thisillustration
shows the range of throughput for four common algorithms, executed on aSHARC DSP
at aclock speed of 40 MHz.

in mind that microprocessor speed is doubling about every three years. This
means you should pay special attention to the method we use in this example.
The actual numbers are always changing, and you will need to repeat the
calculations every time you start a new project. In the world of twenty-first
century technology, blink and you are out-of-date!

When it comes to understanding execution time, the SHARC family is one
of the easiest DSP to work with. This is because it can carry out a
multiply-accumulate operation in a single clock cycle. Since most FIR
filters use 25 to 400 coefficients, 25 to 400 clock cycles are required,
respectively, for each sample being processed. As previously described,
there is a small amount of overhead needed to achieve this loop efficiency
(priming the first loop and completing the last loop), but it is negligible
when the number of loops is this large. To obtain the throughput of the
filter, we can divide the SHARC clock rate (40 MHz at present) by the
number of clock cycles required per sample. This gives us a maximum FIR
data rate of about 100k to 1.6M samples/second. The calculations can't get
much simpler than thisl These FIR throughput values are shown in Fig. 28-
11.

The calculations are just as easy for recursive filters. Typical IR filters use
about 5 to 17 coefficients. Since these loops are relatively short, we will
add a small amount of overhead, say 3 cycles per sample. This resultsin
8 to 20 clock cycles being required per sample of processed data. For the
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40 MHz clock rate, this provides a maximum IIR throughput of 1.8M to
3.1M samples/second. These I IR values are also shown in Fig. 28-11.

Next we come to the frequency domain techniques, based on the Fast Fourier
Transform. FFT subroutines are almost always provided by the manufacturer
of the DSP. These are highly-optimized routines written in assembly. The
specification sheet of the ADSP-21062 SHARC DSP indicates that a 1024
sample complex FFT requires 18,221 clock cycles, or about 0.46 milliseconds
at 40 MHz. To calculate the throughput, it is easier to view this as 17.8 clock
cycles per sample. This "per-sample" value only changes slightly with longer
or shorter FFTs. For instance, a 256 sample FFT requires about 14.2 clock
cycles per sample, and a 4096 sample FFT requires 21.4 clock cycles per
sample. Real FFTs can be calculated about 40% faster than these complex FFT
values. This makes the overall range of all FFT routines about 10 to 22 clock
cycles per sample, corresponding to a throughput of about 1.8M to 3.3M
sampl es/second.

FFT convolution is a fast way to carry out FIR filters. In atypica case, a 512
sample segment is taken from the input, padded with an additional 512 zeros,
and converted into its frequency spectrum by using a 1024 point FFT. After
multiplying this spectrum by the desired frequency response, a 1024 point
Inverse FFT is used to move back into the time domain. The resulting 1024
points are combined with the adjacent processed segments using the overlap-
add method. This produces 512 points of the output signal.

How many clock cycles does this take? Each 512 sample segment requires two
1024 point FFTs, plus a small amount of overhead. In round terms, thisis
about a factor of five greater than for a single FFT of 512 points. Since the
real FFT requires about 12 clock cycles per sample, FFT convolution can be
carried out in about 60 clock cycles per sample. For a 2106x SHARC DSP at
40 MHz, this corresponds to a data throughput of approximately 660k
sampl es/second.

Notice that this is about the same as a 60 coefficient FIR filter carried out by
conventional convolution. In other words, if an FIR filter has less than 60
coefficients, it can be carried out faster by standard convolution. If it has
greater than 60 coefficients, FFT convolution is quicker. A key advantage of
FFT convolution is that the execution time only increases as the logarithm of
the number of coefficients. For instance a 4,096 point filter kernel only
requires about 30% longer to execute as one with only 512 points.

FFT convolution can also be applied in two-dimensions, such as for image
processing. For instance, suppose we want to process an 800x600 pixel image
in the frequency domain. First, pad the image with zeros to make it
1024x1024. The two-dimensional frequency spectrum is then calculated by
taking the FFT of each of the rows, followed by taking the FFT of each of the
resulting columns. After multiplying this 1024x1024 spectrum by the desired
frequency response, the two-dimensional Inverse FFT istaken. Thisis carried
out by taking the Inverse FFT of each of the rows, and then each of the
resulting columns. Adding the number of clock cycles and dividing by the
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number of samples, we find that this entire procedure takes roughly 150 clock
cycles per pixel. For a 40 MHz ADSP-2106, this corresponds to a data
throughput of about 260k samples/second.

Comparing these different techniques in Fig. 28-11, we can make an important
observation. Nearly all DSP techniques require between 4 and 400
instructions (clock cycles in the SHARC family) to execute. For a SHARC
DSP operating at 40 MHz, we can immediately conclude that its data
throughput will be between 100k and 10M samples per second, depending on
how complex of algorithm is used.

Now that we understand how fast DSPs can process digitized signals, let's turn
our attention to the other end; how fast do we need to process the data? Of
course, this depends on the application. We will look at two of the most
common, audio and video processing.

The data rate needed for an audio signal depends on the required quality of the
reproduced sound. At the low end, telephone quality speech only requires
capturing the frequencies between about 100 Hz and 3.2 kHz, dictating a
sampling rate of about 8k samples/second. In comparison, high fidelity music
must contain the full 20 Hz to 20 kHz range of human hearing. A 44.1 kHz
sampling rate is often used for both the left and right channels, making the
complete Hi Fi signal 88.2k samples/second. How does the SHARC family
compare with these requirements? Asshown in Fig. 28-11, it can easily handle
high fidelity audio, or process several dozen voice signals at the same time.

Video signals are a different story; they require about one-thousand times the
datarate of audio signals. A good example of low quality video is the the CIF
(Common Interface Format) standard for videophones. This uses 352x288
pixels, with 3 colors per pixel, and 30 frames per second, for a total data rate
of 9.1 million samples per second. At the high end of quality there is HDTV
(high-definition television), using 1920x1080 pixels, with 3 colors per pixel,
and 30 frames per second. This requires a data rate to over 186 million
samples per second. These data rates are above the capabilities of a single
SHARC DSP, as shown in Fig. 28-11. There are other applications that also
require these very high data rates, for instance, radar, sonar, and military uses
such as missile guidance.

To handle these high-power tasks, several DSPs can be combined into asingle
system. This is called multiprocessing or parallel processing. The
SHARC DSPs were designed with this type of multiprocessing in mind, and
include special features to make it as easy as possible. For instance, no
external hardware logic is required to connect the external busses of multiple
SHARC DSPs together; all of the bus arbitration logic is already contained
within each device. As an alternative, the link ports (4 bit, parallel) can
be used to connect multiple processors in various configurations. Figure 28-
12 shows typical ways that the SHARC DSPs can be arranged in
multiprocessing systems. In Fig. (a), the algorithm is broken into sequential
steps, with each processor performing one of the stepsin an "assembly line"
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a. Data flow multiprocessing

DATA

ADSP-2106x ADSP-2106x ADSP-2106x

DATA

Link Link Link Link Link Link
> Port Port > Port Port > Port Port >

b. Cluster multiprocessing

ADSP-2106x ADSP-2106x ADSP-2106x

Link Link Link Link Link Link
<> Port Port <> Port Port € > Port Port <>

External Port External Port External Port

) ) 1

$

BULK MEMORY

FIGURE 28-12

Multiprocessing configurations. Multiprocessor systemstypically use one of two schemes
to communicate between processor nodes, (a) dedicated point-to-point communication
channels, or (b) a shared global memory accessed over a parallel bus.

strategy. In (b), the processors interact through a single shared global memory,
accessed over a parallel bus (i.e., the external port). Figure 28-13 shows
another way that a large number of processors can be combined into a single
system, a 2D or 3D "mesh." Each of these configuration will have relative
advantages and disadvantages for a particular task.

To make the programmer's life easier, the SHARC family uses a unified
address space. This means that the 4 Gigaword address space, accessed by the
32 bit address bus, is divided among the various processors that are working
together. To transfer data from one processor to another, simply read from or
write to the appropriate memory locations. The SHARC internal logic takes
care of the rest, transferring the data between processors at a rate as high as
240 Mbytes/sec (at 40 MHZz).
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Link Port Link Port Link Port
ADSP-2106x ADSP-2106x ADSP-2106x
Link Link Link Link Link Link
<> Port Port Port Port <> Port Port < >
Link Port Link Port Link Port
Link Port Link Port Link Port
ADSP-2106x ADSP-2106x ADSP-2106x
Link Link Link Link Link Link
<> Port Port Port Port <> Port Port < >
Link Port Link Port Link Port
FIGURE 28-13

Multiprocessing "mesh" configuration. For applications such as radar imaging, a2D or 3D
array may be the most efficient way to coordinate alarge number of processors.

The Digital Signal Processor Market
The DSP market is very large and growing rapidly. As shown in Fig. 28-14,

it will be about 8-10 billion dollars/year at the turn of the century, and
growing at arate of 30-40% each year. This is being fueled by the incessant

20

—_
W
|
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
]

FIGURE 28-14

The DSP market. At the turn of the
century, the DSP market will be 8-10
billion dollars per year, and expanding at
arate of about 30-40% per year.
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demand for better and cheaper consumer products, such as: cellular
telephones, multimedia computers, and high-fidelity music reproduction.
These high-revenue applications are shaping the field, while less profitable
areas, such as scientific instrumentation, are just riding the wave of
technology.

DSPs can be purchased in three forms, as a core, as a processor, and as a
board level product. In DSP, the term "core" refers to the section of the
processor where the key tasks are carried out, including the data registers,
multiplier, ALU, address generator, and program sequencer. A complete
processor requires combining the core with memory and interfaces to the
outside world.  While the core and these peripheral sections are designed
separately, they will be fabricated on the same piece of silicon, making the
processor a single integrated circuit.

Suppose you build cellular telephones and want to include a DSP in the
design. You will probably want to purchase the DSP as a processor, that
is, an integrated circuit ("chip") that contains the core, memory and other
internal features. For instance, the SHARC ADSP-21060 comesin a"240
lead Metric PQFP" package, only 35x35x4 mm in size. To incorporate this
IC in your product, you design a printed circuit board where it will be
soldered in next to your other electronics. This is the most common way
that DSPs are used.

Now, suppose the company you work for manufactures its own integrated
circuits. In this case, you might not want the entire processor, just the design
of the core. After completing the appropriate licensing agreement, you can
start making chips that are highly customized to your particular application.
This gives you the flexibility of selecting how much memory is included, how
the chip receives and transmits data, how it is packaged, and so on. Custom
devices of this type are an increasingly important segment of the DSP
marketplace.

Lastly, there are several dozen companies that will sell you DSPs already
mounted on a printed circuit board. These have such features as extra
memory, A/D and D/A converters, EPROM sockets, multiple processors on
the same board, and so on. While some of these boards are intended to be
used as stand alone computers, most are configured to be plugged into a
host, such as a personal computer. Companies that make these types of
boards are called Third Party Developers. The best way to find them is to
ask the manufacturer of the DSP you want to use. Look at the DSP
manufacturer's website; if you don't find a list there, send them an e-mail.
They will be more than happy to tell you who is using their products and
how to contact them.

The present day Digital Signal Processor market (1998) is dominated by four
companies. Hereisalist, and the general scheme they use for numbering their
products:
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Analog Devices (www.analog.com/dsp)
ADSP-21xx 16 bit, fixed point
ADSP-21xxx 32 bit, floating and fixed point

L ucent Technologies (www.lucent.com)
DSP16xxx 16 bit fixed point
DSP32xx 32 bit floating point

M otorola (www.mot.com)
DSP561xx 16 bit fixed point
DSP560xx 24 bit, fixed point
DSP96002 32 hit, floating point

Texas Instruments (www.ti.com)
TMS320Cxx 16 bit fixed point
TMS320Cxx 32 bit floating point

Keep in mind that the distinction between DSPs and other microprocessors is
not always a clear line. For instance, look at how Intel describes the MMX
technology addition to its Pentium processor:

"Intel engineers have added 57 powerful new instructions
specifically designed to manipulate and process video, audio
and graphical data efficiently. These instructions are oriented
to the highly parallel, repetitive sequences often found in
multimedia operations."

In the future, we will undoubtedly see more DSP-like functions merged
into traditional microprocessors and microcontrollers. The internet and other
multimedia applications are a strong driving force for these changes. These
applications are expanding so rapidly, in twenty years it is very possible that
the Digital Signal Processor may be the "traditional” microprocessor.

How do you keep up with this rapidly changing field? The best way is to
read trade journals that cover the DSP market, such as EDN (Electronic
Design News, www.ednmag.com), and ECN (Electronic Component News,
www.echmag.com). These are distributed free, and contain up-to-date
information on what is available and where the industry is going. Trade
journals are a "must-read" for anyone serious about the field. You will also
want to be on the mailing list of several DSP manufacturers. This will
allow you to receive new product announcements, pricing information, and
special offers (such as free software and low-cost evaluation kits). Some
manufacturers also distribute periodic newsletters. For instance, Analog
Devices publishes Analog Dialogue four times a year, containing articles
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and information on current topics in signal processing. All of these
resources, and much more, can be contacted over the internet. Start by
exploring the manufacturers’ websites, and then sending them e-mail
requesting specific information.
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Data Compression

Data transmission and storage cost money. The more information being dealt with, the more it
costs. In spite of this, most digital data are not stored in the most compact form. Rather, they
are stored in whatever way makes them easiest to use, such as: ASCII text from word processors,
binary code that can be executed on a computer, individual samples from a data acquisition
system, etc. Typically, these easy-to-use encoding methods require data files about twice as large
as actually needed to represent the information. Data compression is the general term for the
various algorithms and programs developed to address this problem. A compression program is
used to convert data from an easy-to-use format to one optimized for compactness. Likewise, an
uncompression program returns the information to its original form. We examine five techniques
for data compression in this chapter. The first three are simple encoding techniques, called: run-
length, Huffman, and delta encoding. The last two are elaborate procedures that have established
themselves as industry standards. LZW and JPEG.

Data Compression Strategies

Table 27-1 shows two different ways that data compression algorithms can be
categorized. In (a), the methods have been classified as either lossless or
lossy. A lossless technique means that the restored data file is identical to the
original. This is absolutely necessary for many types of data, for example:
executable code, word processing files, tabulated numbers, etc. You cannot
afford to misplace even a single bit of this type of information. In comparison,
data files that represent images and other acquired signals do not have to be
keep in perfect condition for storage or transmission. All real world
measurements inherently contain a certain amount of noise. If the changes
made to these signals resemble a small amount of additional noise, no harm is
done. Compression techniques that allow this type of degradation are called
lossy. This distinction is important because lossy techniques are much more
effective at compression than lossless methods. The higher the compression
ratio, the more noise added to the data.

481
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Group size:
run-length Cs&Q Cs&Q fixed fixed
Huffman JPEG Huffman fixed variable
delta MPEG Arithmetic variable variable
LZW run-length, LZW variable  fixed
a Losdessor Lossy b. Fixed or variable group size
TABLE 27-1

Compression classifications. Data compression methods can be divided in two ways. In (a), the techniques
are classified aslossless or lossy. Lossless methods restore the compressed data to exactly the same form as
the original, while lossy methods only generate an approximation. In (b), the methods are classified according
to afixed or variable size of group taken from the original file and written to the compressed file.

Images transmitted over the world wide web are an excellent example of why
data compression is important. Suppose we need to download a digitized color
photograph over a computer's 33.6 kbps modem. If the image is not compressed
(a TIFF file, for example), it will contain about 600 kbytes of data. If it has
been compressed using a lossless technique (such as used in the GIF format),
it will be about one-half this size, or 300 kbytes. If lossy compression has
been used (a JPEG file), it will be about 50 kbytes. The point is, the download
times for these three equivalent files are 142 seconds, 71 seconds, and 12
seconds, respectively. That's a big difference! JPEG is the best choice for
digitized photographs, while GIF is used with drawn images, such as company
logos that have large areas of a single color.

Our second way of classifying data compression methods is shown in Table 27-
1b. Most data compression programs operate by taking a group of data from
the original file, compressing it in some way, and then writing the compressed
group to the output file. For instance, one of the techniques in this table is
CS& Q, short for coarser sampling and/or quantization. Suppose we are
compressing a digitized waveform, such as an audio signal that has been
digitized to 12 bits. We might read two adjacent samples from the original
file (24 bits), discard one of the sample completely, discard the least significant
4 bits from the other sample, and then write the remaining 8 bits to the output
file. With 24 bits in and 8 bits out, we have implemented a 3:1 compression
ratio using a lossy algorithm. While this is rather crude in itself, it is very
effective when used with a technique called transform compression. As we
will discuss later, this is the basis of JPEG.

Table 27-1b shows CS& Q to be a fixed-input fixed-output scheme. That is,
a fixed number of bits are read from the input file and a smaller fixed
number of bits are written to the output file. Other compression methods
allow a variable number of bits to be read or written. As you go through
the description of each of these compression methods, refer back to this
table to understand how it fits into this classification scheme. Why are
JPEG and MPEG not listed in this table? These are composite algorithms
that combine many of the other techniques. They are too sophisticated to
be classified into these simple categories.
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Run-Length Encoding

original data stream:

run-length encoded:

FIGURE 27-1

Data files frequently contain the same character repeated many times in a row.
For example, text files use multiple spaces to separate sentences, indent
paragraphs, format tables & charts, etc. Digitized signals can also have runs
of the same value, indicating that the signal is not changing. For instance, an
image of the nighttime sky would contain long runs of the character or
characters representing the black background. Likewise, digitized music might
have a long run of zeros between songs. Run-length encoding is a simple
method of compressing these types of files.

Figure 27-1 illustrates run-length encoding for a data sequence having frequent
runs of zeros. Each time a zero is encountered in the input data, two values are
written to the output file. The first of these valuesis a zero, a flag to indicate
that run-length compression is beginning. The second value is the number of
zeros in the run. If the average run-length is longer than two, compression will
take place. On the other hand, many single zeros in the data can make the
encoded file larger than the original.

Many different run-length schemes have been developed. For example, the
input data can be treated as individual bytes, or groups of bytes that represent
something more elaborate, such as floating point numbers. Run-length
encoding can be used on only one of the characters (as with the zero above),
several of the characters, or all of the characters.

A good example of a generalized run-length scheme is PackBits, created for
Macintosh users. Each byte (eight bits) from the input file is replaced by nine
bits in the compressed file. The added ninth bit is interpreted as the sign of
the number. That is, each character read from the input file is between 0 to
255, while each character written to the encoded file is between -255 and 255.
To understand how this is used, consider the input file: 1,2,3,4,2,2,2,2,4, and
the compressed file generated by the PackBits algorithm: 1,2,3,4,2,-3,4. The
compression program simply transfers each number from the input file to the
compressed file, with the exception of the run: 2,2,2,2. Thisis represented in
the compressed file by the two numbers:. 2,-3. The first number (*2") indicates
what character the run consists of. The second number ("-3") indicates the
number of characters in the run, found by taking the absolute value and adding
one. For instance, 4,-2 means 4,4,4; 21,-4 means 21,21,21,21,21, etc.

17 8 540 0 0 97516 045230 0 0 0 0O 3670 O 8-

f I 7

17 8 5403 975160 145230 5 3670 2 8-

Example of run-length encoding. Each run of zerosis replaced by two charactersin the compressed file:
azero to indicate that compression is occurring, followed by the number of zerosin the run.
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An inconvenience with PackBits is that the nine bits must be reformatted into
the standard eight bit bytes used in computer storage and transmission. A
useful modification to this scheme can be made when the input is restricted to
be ASCII text. As shown in Table 27-2, each ASCII character is usually
stored as a full byte (eight bits), but really only uses seven of the bits to
identify the character. In other words, the values 127 through 255 are not
defined with any standardized meaning, and do not need to be stored or
transmitted. This allows the eighth bit to indicate if run-length encoding isin
progress.

Huffman Encoding

This method is named after D.A. Huffman, who developed the procedure in the
1950s. Figure 27-2 shows a histogram of the byte values from a large ASCI|
file. More than 96% of this file consists of only 31 characters. the lower case
letters, the space, the comma, the period, and the carriage return. This
observation can be used to make an appropriate compression scheme for this
file. To start, we will assign each of these 31 common characters a five bit
binary code: 00000 = "a", 00001 = "b", 00010 = "c", etc. This allows 96% of
the file to be reduced in size by 5/8. The last of the five bit codes, 11111, will
be a flag indicating that the character being transmitted is not one of the 31
common characters. The next eight bits in the file indicate what the character
is, according to the standard ASCII assignment. This results in 4% of the
characters in the input file requiring 5+8=13 bits. The idea is to assign
frequently used characters fewer bits, and seldom used characters

TABLE 27-2

ASCII codes. Thisis along established
standard for allowing letters and numbers
to be represented in digital form. Each
printable character is assigned a number
between 32 and 127, while the numbers
between 0 and 31 are used for various
control actions. Even though only 128
codes are defined, ASCI| characters are
usually stored as a full byte (8 bits). The
undefined values (128 to 255) are often
used for Greek letters, math symbols, and
various geometric patterns; however, thisis
not standardized. Many of the control
characters (0 to 31) are based on older
communications networks, and are not
applicable to computer technology.

0 null 32 space 64 @ 9%
1 start heading 33 ! 65 A 97 a
2 start of text 34 " 66 B 98 b
3 end of text 3B # 67 C 9 ¢
4 end of xmit 36 $ 68 D 100 d
5 enquiry 37 % 69 E 101 e
6 acknowledge 38 & 70 F 102 f
7  bell, beep 39 71 G 103 g
8  backspace 40 ( 72 H 104 h
9 horz. tab 41 ) 73 | 105 i
10 linefeed 42 * 74 J 106 |
11 vert. tab, home 43 + 75 K 107 k
12 formfeed, cls 44 76 L 108 |
13 carriagereturn 45 - 7 M 109 m
14 shift out 46 . 78 N 110 n
15 shiftin a7 | 79 O 111 o
16 datalineesc 48 0 80 P 112 p
17 devicecontrol 1 49 1 81 Q 113 g
18 device control 2 50 2 82 R 114 r
19 devicecontrol 3 51 3 83 S 115 s
20 device control 4 52 4 84 T 116 t
21 negative ack. 53 5 85 U 117 r
22 synch.idle 54 6 86 V 118 v
23 end xmit block 55 7 87 W 119 w
24 cancel 56 8 88 X 120 x
25 end of medium 57 9 89 Y 121 y
26 substitute 58 N =z 122 z
27 escape 59 ; 91 [ 123 {
28 file separator 60 < 92 \ 124 |
29 group separator 61 = 93 ] 125 }
30 record separator 62 > 94 N 126 ~
31 unit separator 63 2 95 127 del
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Histogram of text. Thisisahistogram of
the ASCII values from a chapter in this
book. The most common characters are
the lower case letters, the space and the
carriage return.
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more bits. In this example, the average number of bits required per original
character is: 0.96x5 + 0.04x13 = 5.32. In other words, an overall
compression ratio of: 8 bits/5.32 bits, or about1.5:1.

Huffman encoding takes this idea to the extreme. Characters that occur most
often, such the space and period, may be assigned as few as one or two bits.
Infrequently used characters, such as; !, @, #, $ and %, may require a dozen
or more bits. In mathematical terms, the optimal situation is reached when the
number of bits used for each character is proportional to the logarithm of the
character's probability of occurrence.

A clever feature of Huffman encoding is how the variable length codes can be
packed together. Imagine receiving a serial data stream of ones and zeros. |If
each character is represented by eight bits, you can directly separate one
character from the next by breaking off 8 bit chunks. Now consider a Huffman
encoded data stream, where each character can have a variable number of bits.
How do you separate one character from the next? The answer lies in the
proper selection of the Huffman codes that enable the correct separation. An
example will illustrate how this works.

Figure 27-3 shows a simplified Huffman encoding scheme. The characters A
through G occur in the original data stream with the probabilities shown. Since
the character A is the most common, we will represent it with a single bit, the
code: 1. The next most common character, B, receives two bits, the code: 01.
This continues to the least frequent character, G, being assigned six bits,
000011. Asshown in thisillustration, the variable length codes are resorted
into eight bit groups, the standard for computer use.

When uncompression occurs, al the eight bit groups are placed end-to-end to
form along serial string of ones and zeros. Look closely at the encoding
table of Fig. 27-3, and notice how each code consists of two parts: a number
of zeros before a one, and an optional binary code after the one. This allows
the binary data stream to be separated into codes without the need for
delimiters or other marker between the codes. The uncompression program
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FIGURE 27-3

Huffman encoding. The encoding table
assigns each of the seven letters used in this
example a variable length binary code, based
on its probability of occurrence. The original
data stream composed of these 7 charactersis
translated by this table into the Huffman
encoded data. Since each of the Huffman
codes is a different length, the binary data
need to be regrouped into standard 8 bit bytes
for storage and transmission.

original data stream:

The Scientist and Engineer's Guide to Digital Sgnal Processing

Example Encoding Table
letter | probability | Huffman code

A 154 1

B 110 01

C 072 0010

D .063 0011

E .059 0001

F .015 000010
G 011 000011

DFBEA:-

7 TN

Huffman encoded: 0010 0001 000011 1 0011 000010 01 0001 1--*

{ { { {

grouped into bytes: 00100001 00001110 01100001 00100011---

byte 1 byte 2 byte 3 byte 4

looks at the stream of ones and zeros until a valid code is formed, and then
starting over looking for the next character. The way that the codes are formed
insures that no ambiguity exists in the separation.

A more sophisticated version of the Huffman approach is called arithmetic
encoding. In this scheme, sequences of characters are represented by
individual codes, according to their probability of occurrence. This has the
advantage of better data compression, say 5-10%. Run-length encoding
followed by either Huffman or arithmetic encoding is also a common strategy.
As you might expect, these types of algorithms are very complicated, and
usually left to data compression specialists.

To implement Huffman or arithmetic encoding, the compression and un-
compression algorithms must agree on the binary codes used to represent each
character (or groups of characters). This can be handled in one of two ways.
The simplest is to use a predefined encoding table that is always the same,
regardless of the information being compressed. More complex schemes use
encoding optimized for the particular data being used. This requires that the
encoding table be included in the compressed file for use by the uncompression
program. Both methods are common.

Delta Encoding

In science, engineering, and mathematics, the Greek letter delta (A) is used to
denote the change in a variable. The term delta encoding, refers to
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original datastream: 17 19 24 24 24 21 15 1089 95 96 96 96 95 94 94 95 93 90 87 86 86"

delta encoded:

FIGURE 27-4

50036576100-1-101-2-3-3-10-

Example of deltaencoding. Thefirst value in the encoded fileisthe same asthefirst valuein the original
file. Thereafter, each samplein the encoded fileisthe difference between the current and last samplein
the original file.

several techniques that store data as the difference between successive samples
(or characters), rather than directly storing the samples themselves. Figure 27-
4 shows an example of how thisisdone. The first value in the delta encoded
fileis the same as the first value in the original data. All the following values
in the encoded file are equal to the difference (delta) between the corresponding
value in the input file, and the previous value in the input file.

Delta encoding can be used for data compression when the values in the
original data are smooth, that is, there is typically only a small change between
adjacent values. This is not the case for ASCII text and executable code;
however, it is very common when the file represents a signal. For instance,
Fig. 27-5a shows a segment of an audio signal, digitized to 8 bits, with each
sample between -127 and 127. Figure 27-5b shows the delta encoded version
of this signal. The key feature is that the delta encoded signal has a lower
amplitude than the original signal. In other words, delta encoding has
increased the probability that each sample's value will be near zero, and
decreased the probability that it will be far from zero. This uneven probability
isjust the thing that Huffman encoding needs to operate. If the original signal
is not changing, or is changing in a straight line, delta encoding will result in
runs of samples having the same value.
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FIGURE 27-5

Example of deltaencoding. Figure (a) is an audio signal digitized to 8 bits. Figure (b) shows the delta
encoded version of thissignal. Deltaencoding is useful for datacompression if the signal being encoded
varies slowly from sample-to-sample.
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This is what run-length encoding requires. Correspondingly, delta encoding
followed by Huffman and/or run-length encoding is a common strategy for
compressing signals.

The idea used in delta encoding can be expanded into a more complicated
technique called Linear Predictive Coding, or LPC. To understand LPC,
imagine that the first 99 samples from the input signal have been encoded, and
we are about to work on sample number 100. We then ask ourselves. based
on the first 99 samples, what is the most likely value for sample 100? In delta
encoding, the answer is that the most likely value for sample 100 is the same
as the previous value, sample 99. This expected value is used as a reference
to encode sample 100. That is, the difference between the sample and the
expectation is placed in the encoded file. LPC expands on this by making a
better guess at what the most probable value is. This is done by looking at the
last several samples, rather than just the last sample. The algorithms used by
LPC are similar to recursive filters, making use of the z-transform and other
intensively mathematical techniques.

LZW Compression

LZW compression is named after its developers, A. Lempel and J. Ziv, with
later modifications by Terry A. Welch. It is the foremost technique for
general purpose data compression due to its simplicity and versatility.
Typically, you can expect LZW to compress text, executable code, and similar
data files to about one-half their original size. LZW also performs well when
presented with extremely redundant data files, such as tabulated numbers,
computer source code, and acquired signals. Compression ratios of 5:1 are
common for these cases. LZW is the basis of several personal computer
utilities that claim to "double the capacity of your hard drive."

LZW compression is always used in GIF image files, and offered as an option
in TIFF and PostScript. LZW compression is protected under U.S. patent
number 4,558,302, granted December 10, 1985 to Sperry Corporation (now the
Unisys Corporation). For information on commercial licensing, contact: Welch
Licensing Department, Law Department, M/SC2SW1, Unisys Corporation, Blue
Bell, Pennsylvania, 19424-0001.

LZW compression uses a code table, asillustrated in Fig. 27-6. A common
choice is to provide 4096 entries in the table. In this case, the LZW
encoded data consists entirely of 12 bit codes, each referring to one of the
entries in the code table. Uncompression is achieved by taking each code
from the compressed file, and translating it through the code table to find
what character or characters it represents. Codes 0-255 in the code table
are always assigned to represent single bytes from the input file. For
example, if only these first 256 codes were used, each byte in the original
file would be converted into 12 bits in the LZW encoded file, resulting in
a 50% larger file size. During uncompression, each 12 bit code would be
translated via the code table back into the single bytes. Of course, this
wouldn't be a useful situation.
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Example Code Table
FIGURE 27-6 code number translation
Example of codetable compression. Thisisthe basisof the " 0000 0
popular LZW compression method. Encoding occurs by < 0001 1
identifying sequences of bytesin the original file that exist §
in the code table. The 12 bit code representing the sequence 3 : :
isplaced in the compressed file instead of the sequence. The g 0254 254
first 256 entries in the table correspond to the single byte =
values, 0 to 255, while the remaining entries correspond to - 0255 255
sequences of bytes. The LZW algorithmisan efficient way s 0256 145 201 4
of generating the code table based on the particular data 8 0257 243 245
being compressed. (The code table in this figure is a N . .
simplified example, not one actually generated by the LZW = : :
algorithm). | 4095 XXX XXX XXX

original data stream:

code table encoded:

123 145 201 4 119 89 243 245 59 11 206 145 201 4 243 245---

123 256 119 89 257 59 11 206 256 257---

The LZW method achieves compression by using codes 256 through 4095
to represent sequences of bytes. For example, code 523 may represent the
sequence of three bytes: 231 124 234. Each time the compression algorithm
encounters this sequence in the input file, code 523 is placed in the encoded
file. During uncompression, code 523 is translated via the code table to
recreate the true 3 byte sequence. The longer the sequence assigned to a
single code, and the more often the sequence is repeated, the higher the
compression achieved.

Although this is a simple approach, there are two major obstacles that need to
be overcome: (1) how to determine what sequences should be in the code
table, and (2) how to provide the uncompression program the same code table
used by the compression program. The LZW algorithm exquisitely solves both
these problems.

When the LZW program starts to encode a file, the code table contains only the
first 256 entries, with the remainder of the table being blank. This means that
the first codes going into the compressed file are simply the single bytes from
the input file being converted to 12 bits. As the encoding continues, the LZW
algorithm identifies repeated sequences in the data, and adds them to the code
table. Compression starts the second time a sequence is encountered. The key
point is that a sequence from the input file is not added to the code table until
it has already been placed in the compressed file as individual characters
(codes 0 to 255). This is important because it allows the uncompression
program to reconstruct the code table directly from the compressed data,
without having to transmit the code table separately.
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FIGURE 27-7

LZW compression flowchart. Thevariable, CHAR, isasingle byte. Thevariable, STRING, isavariable

length sequence of bytes. Dataare read from theinput file (box 1

& 2) assingle bytes, and written to the

compressed file (box 4) as 12 bit codes. Table 27-3 shows an example of this algorithm.

Figure 27-7 shows a flowchart for LZW

say it writes the character "

compression. Table 27-3 provides the
step-by-step details for an example input file consisting of 45 bytes, the ASCI|
text string: the/rain/in/Spain/falls/mainly/on/the/plain. When we say that the
LZW algorithm reads the character "a' from the input file, we mean it reads the
value: 01100001 (97 expressed in 8 bits), where 97 is"a" in ASCIl. When we
a"' to the encoded file, we mean it writes:

000001100001 (97 expressed in 12 hits).
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char SRS InTable?  Output Arggfg STNR%’G Comments
1 t t t first character- no action
2 h th no t 256 = th h
3 e he no h 257 =he e
4 / e/ no e 258 = ¢/ /
5 r Ir no / 259=/r r
6 a ra no r 260 =ra a
7 i ai no a 261l =ai i
8 n in no i 262=in n
9 / n/ no n 263 =n/ /
10 i fi no / 264 =i i
11 n in yes (262) in first match found
12 / in/ no 262 265 =in/ /
13 S /S no / 266 =/S S
14 p Sp no S 267 = Sp p
15 a pa no p 268 = pa a
16 i ai yes (261) ai matches ai, ain not in table yet
17 n an no 261 269 =ain n ain added to table
18 / n/ yes (263) n/
19 f n/f no 263 270 = n/f f
20 a fa no f 271=fa a
21 | al no a 272=4d |
22 | [l no | 273 =1l |
23 S Is no | 274 =1s S
24 / s/ no S 275=¢/ /
25 m /m no / 276 =/m m
26 a ma no m 277 =ma a
27 i ai yes (261) ai matches ali
28 n ain yes (269) ain matches longer string, ain
29 | ainl no 269 278 = ainl |
30 y ly no | 279=1ly y
31 / y/ no y 280 =y/ /
32 0 /o no / 281=/o 0
33 n on no 0 282 =on n
34 / n/ yes (263) n/
35 t n/t no 263 283 = n/t t
36 h th yes (256) th matches th, the not in table yet
37 e the no 256 284 =the e the added to table
38 / e/ yes e/
39 p elp no 258 285 =¢€lp p
40 | pl no p 286 = pl |
41 a la no | 287 =la a
42 i ai yes (261) ai matches ai
43 n ain yes (269) ain matches longer string ain
44 / ain/ no 269 288 =ain/ /
45 | EOF |/ / end of file, output STRING
TABLE 27-3

LZW example. This shows the compression of the phrase: the/rain/in/Spain/falls/mainly/on/the/plain/.
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The compression algorithm uses two variables;: CHAR and STRING. The
variable, CHAR, holds a single character, i.e., a single byte value between 0
and 255. Thevariable, STRING, is avariable length string, i.e., agroup of one
or more characters, with each character being a single byte. In box 1 of Fig.
27-7, the program starts by taking the first byte from the input file, and placing
it in the variable, STRING. Table 27-3 shows this action in line 1. Thisis
followed by the algorithm looping for each additional byte in the input file,
controlled in the flow diagram by box 8. Each time a byte is read from the
input file (box 2), it is stored in the variable, CHAR. The data table is then
searched to determine if the concatenation of the two variables,
STRING+CHAR, has already been assigned a code (box 3).

If a match in the code table is not found, three actions are taken, as shown in
boxes 4, 5 & 6. In box 4, the 12 hit code corresponding to the contents of the
variable, STRING, is written to the compressed file. In box 5, a new code is
created in the table for the concatenation of STRING+ CHAR. In box 6, the
variable, STRING, takes the value of the variable, CHAR. An example of these
actions is shown in lines 2 through 10 in Table 27-3, for the first 10 bytes of
the example file.

When a match in the code table is found (box 3), the concatenation of
STRING+CHAR is stored in the variable, STRING, without any other action
taking place (box 7). That is, if a matching sequenceis found in the table,
no action should be taken before determining if there is alonger matching
sequence also in the table. An example of thisis shown in line 11, where
the sequence: STRING+CHAR = in, isidentified as already having a code
in the table. Inline 12, the next character from the input file, /, is added
to the sequence, and the code table is searched for: in/. Since this longer
sequence is not in the table, the program adds it to the table, outputs the
code for the shorter sequence that is in the table (code 262), and starts over
searching for sequences beginning with the character, /. This flow of
events is continued until there are no more characters in the input file. The
program is wrapped up with the code corresponding to the current value of
STRING being written to the compressed file (as illustrated in box 9 of Fig.
27-7 and line 45 of Table 27-3).

A flowchart of the LZW uncompression algorithm is shown in Fig. 27-8. Each
code is read from the compressed file and compared to the code table to provide
the translation. As each code is processed in this manner, the code table is
updated so that it continually matches the one used during the compression.
However, there is a small complication in the uncompression routine. There
are certain combinations of data that result in the uncompression algorithm
receiving a code that does not yet exist in its code table. This contingency is
handled in boxes 4,5 & 6.

Only a few dozen lines of code are required for the most elementary LZW
programs. The real difficulty lies in the efficient management of the code
table. The brute force approach results in large memory requirements and a
slow program execution. Several tricks are used in commercial LZW
programs to improve their performance. For instance, the memory problem



FIGURE 27-8

LZW uncompression flowchart. The variables, OCODE and NCODE (oldcode and newcode), hold the
12 bit codes from the compressed file, CHAR holds a single byte, STRING holds a string of bytes.
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arises because it is not know beforehand how long each of the character strings
for each code will be. Most LZW programs handle this by taking
advantage of the redundant nature of the code table. For example, look at line
29 in Table 27-3, where code 278 is defined to be ainl. Rather than storing
these four bytes, code 278 could be stored as. code 269 + |, where code 269
was previously defined asainin line 17. Likewise, code 269 would be stored
as. code 261 + n, where code 261 was previously defined asai inline 7. This
pattern always holds: every code can be expressed as a previous code plus one
new character.

The execution time of the compression algorithm is limited by searching the
code table to determine if a match is present. As an analogy, imagine you want
to find if afriend's name is listed in the telephone directory. The catch is, the
only directory you have is arranged by telephone number, not alphabetical
order. Thisrequires you to search page after page trying to find the name you
want. Thisinefficient situation is exactly the same as searching all 4096 codes
for a match to a specific character string. The answer: organize the code table
so that what you are looking for tells you where to look (like a partially
al phabetized telephone directory). In other words, don't assign the 4096 codes
to sequential locations in memory. Rather, divide the memory into sections
based on what sequences will be stored there. For example, suppose we want
to find if the sequence: code 329 + x, isin the code table. The code table
should be organized so that the "x" indicates where to starting looking. There
are many schemes for this type of code table management, and they can become
guite complicated.

This brings up the last comment on LZW and similar compression schemes: it
is a very competitive field. While the basics of data compression are relatively
simple, the kinds of programs sold as commercial products are extremely
sophisticated. Companies make money by selling you programs that perform
compression, and jealously protect their trade-secrets through patents and the
like. Don't expect to achieve the same level of performance as these programs
in a few hours work.

JPEG (Transform Compression)

Many methods of lossy compression have been developed; however, a family
of techniques called transform compression has proven the most valuable. The
best example of transform compression is embodied in the popular JPEG
standard of image encoding. JPEG is named after its origin, the Joint
Photographers Experts Group. We will describe the operation of JPEG to
illustrate how lossy compression works.

We have aready discussed a simple method of lossy data compression, coarser
sampling and/or quantization (CS&Q in Table 27-1). This involves reducing
the number of bits per sample or entirely discard some of the samples. Both
these procedures have the desired effect: the data file becomes smaller at the
expense of signal quality. Asyou might expect, these simple methods do not
work very well.
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JPEG image division. JPEG transform compression starts by breaking the image into 8x8 groups,
each containing 64 pixels. Three of these 8x8 groups are enlarged in this figure, showing the values
of the individual pixels, a single byte value between 0 and 255.

Transform compression is based on a simple premise: when the signal is passed
through the Fourier (or other) transform, the resulting data values will no
longer be equal in their information carrying roles. In particular, the low
frequency components of a signal are more important than the high frequency
components. Removing 50% of the bits from the high frequency components
might remove, say, only 5% of the encoded information.

As shown in Fig. 27-9, JPEG compression starts by breaking the image into
8x8 pixel groups. The full JPEG algorithm can accept a wide range of bits per
pixel, including the use of color information. In this example, each pixel is a
single byte, a grayscale value between 0 and 255. These 8x8 pixel groups are
treated independently during compression. That is, each group is initially
represented by 64 bytes. After transforming and removing data, each group is
represented by, say, 2 to 20 bytes. During uncompression, the inverse
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transform is taken of the 2 to 20 bytes to create an approximation of the
original 8x8 group. These approximated groups are then fitted together to
form the uncompressed image. Why use 8x8 pixel groups instead of, for
instance, 16x167? The 8x8 grouping was based on the maximum size that
integrated circuit technology could handle at the time the standard was
developed. In any event, the 8x8 size works well, and it may or may not be
changed in the future.

Many different transforms have been investigated for data compression, some
of them invented specifically for this purpose. For instance, the Karhunen-
Loeve transform provides the best possible compression ratio, but is difficult
to implement. The Fourier transform is easy to use, but does not provide
adeguate compression. After much competition, the winner is arelative of the
Fourier transform, the Discrete Cosine Transform (DCT).

Just as the Fourier transform uses sine and cosine waves to represent a signal,
the DCT only uses cosine waves. There are severa versions of the DCT, with
dight differences in their mathematics. As an example of one version, imagine
a 129 point signal, running from sample 0 to sample 128. Now, make this a
256 point signal by duplicating samples 1 through 127 and adding them as
samples 255 to 130. That is: 0,1, 2,--,127,128, 127,--,2,1. Taking the
Fourier transform of this 256 point signal results in a frequency spectrum of
129 points, spread between 0 and 128. Since the time domain signal was
forced to be symmetrical, the spectrum's imaginary part will be composed of
al zeros. In other words, we started with a 129 point time domain signal, and
ended with a frequency spectrum of 129 points, each the amplitude of a cosine
wave. Voila, the DCT!

When the DCT is taken of an 8x8 group, it results in an 8x8 spectrum. In
other words, 64 numbers are changed into 64 other numbers. All these values
are real; there is no complex mathematics here. Just as in Fourier analysis,
each vaue in the spectrum is the amplitude of a basis function. Figure 27-10
shows 6 of the 64 basis functions used in an 8x8 DCT, according to where the
amplitude sits in the spectrum. The 8x8 DCT basis functions are given by:

EQUATION 27-1

DCT basisfunctions. The variables

x & y are the indexes in the spatial _
domain, and u & v aretheindexesin b[x,y] = cos
the frequency spectrum. Thisisfor

an 8x8 DCT, making all theindexes

runfromOto 7.

COS|

(2x+1)umn
16

2y + 1)vm
16

The low frequencies reside in the upper-left corner of the spectrum, while the
high frequencies are in the lower-right. The DC component is at [0,0], the
upper-left most value. The basis function for [0,1] is one-haf cycle of a cosine
wave in one direction, and a constant value in the other. The basis function for
[1,0] is similar, just rotated by 90°.
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FIGURE 27-10

The DCT basis functions. The DCT spectrum consists of an 8x8 array, with each element in the
array being an amplitude of one of the 64 basis functions. Six of these basis functions are shown
here, referenced to where the corresponding amplitude resides.

The DCT calculates the spectrum by correlating the 8x8 pixel group with each
of the basis functions. That is, each spectral value is found by multiplying the
appropriate basis function by the 8x8 pixel group, and then summing the
products. Two adjustments are then needed to finish the DCT calculation (just
as with the Fourier transform). First, divide the 15 spectral values in row 0
and column 0 by two. Second, divide all 64 values in the spectrum by 16.
The inverse DCT is calculated by assigning each of the amplitudes in the
spectrum to the proper basis function, and summing to recreate the spatial
domain. No extra steps are required. These are exactly the same concepts as
in Fourier analysis, just with different basis functions.

Figure 27-11 illustrates JPEG encoding for the three 8x8 groups identified
in Fig. 27-9. The left column, Figs. a b & c, show the original pixel values.
The center column, Figs. d, e & f, show the DCT spectra of these groups.
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FIGURE 27-11

Example of JPEG encoding. Theleft column shows three 8x8 pixel groups, the same ones shown in Fig. 27-9.
The center column shows the DCT spectra of these three groups. The third column shows the error in the
uncompressed pixel values resulting from using a finite number of bits to represent the spectrum.

The right column, Figs. g, h & i, shows the effect of reducing the number of
bits used to represent each component in the frequency spectrum. For instance,
(g) is formed by truncating each of the samples in (d) to ten bits, taking the
inverse DCT, and then subtracting the reconstructed image from the original.
Likewise, (h) and (i) are formed by truncating each sample in the spectrum to
eight and five bits, respectively. As expected, the error in the reconstruction
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increases as fewer bits are used to represent the data. As an example of this
bit truncation, the spectra shown in the center column are represented with 8
bits per spectral value, arranged as 0 to 255 for the DC component, and -127
to 127 for the other values.

The second method of compressing the frequency domain is to discard some
of the 64 spectral values. As shown by the spectrain Fig. 27-11, nearly
all of the signal is contained in the low frequency components. This means
the highest frequency components can be eliminated, while only degrading
the signal a small amount. Figure 27-12 shows an example of the image
distortion that occurs when various numbers of the high frequency
components are deleted. The 8x8 group used in this example is the eye
image of Fig. 27-10. Figure (d) shows the correct reconstruction using all
64 spectral values. The remaining figures show the reconstruction using the
indicated number of lowest frequency coefficients. As illustrated in (c),
even removing three-fourths of the highest frequency components produces
little error in the reconstruction. Even better, the error that does occur
looks very much like random noise.

JPEG is good example of how several data compression schemes can be
combined for greater effectiveness. The entire JPEG procedure is outlined
in the following steps. First, the image is broken into the 8x8 groups.
Second, the DCT is taken of each group. Third, each 8x8 spectrum is
compressed by the above methods: reducing the number of bits and
eliminating some of the components. This takes place in a single step,
controlled by a quantization table. Two examples of quantization tables are
shown in Fig. 27-13. Each value in the spectrum is divided by the matching
value in the quantization table, and the result rounded to the nearest
integer. For instance, the upper-left value of the quantization table is one,

a. 3 coefficients b. 6 coefficients c. 15 coefficients

FIGURE 27-12

Example of JPEG reconstruction. The 8x8 pixel
group used in thisexampleistheeyein Fig. 27-9. As
shown, less than 1/4 of the 64 values are needed to
achieve agood approximation to the correct image.

d. 64 coefficients
(correct image)
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FIGURE 27-13
JPEG quantization tables. These are two example quantization tables that might be used during

compression.

Each value in the DCT spectrum is divided by the corresponding value in the

guantization table, and the result rounded to the nearest integer.

FIGURE 27-14

JPEG serial conversion. A serpentine pattern
used to convert the 8x8 DCT spectrum into a
linear sequence of 64 values. Thisplacesall of
the high frequency componentstogether, where
the large number of zeros can be efficiently
compressed with run-length encoding.

resulting in the DC value being left unchanged. In comparison, the lower-right
entry in (@) is 16, meaning that the original range of -127 to 127 is reduced to
only -7 to 7. In other words, the value has been reduced in precision from
eight bits to four bits. In a more extreme case, the lower-right entry in (b) is
256, completely eliminating the spectral value.

In the fourth step of JPEG encoding, the modified spectrum is converted
from an 8x8 array into alinear sequence. The serpentine pattern shown in
Figure 27-14 is used for this step, placing all of the high frequency
components together at the end of the linear sequence. This groups the
zeros from the eliminated components into long runs. The fifth step
compresses these runs of zeros by run-length encoding. In the sixth step,
the sequence is encoded by either Huffman or arithmetic encoding to form
the final compressed file.

The amount of compression, and the resulting loss of image quality, can be
selected when the JPEG compression program is run. Figure 27-15 shows the
type of image distortion resulting from high compression ratios. With the 45:1
compression ratio shown, each of the 8x8 groups is represented by only about
12 hits. Close inspection of this image shows that six of the lowest frequency
basis functions are represented to some degree.
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a. Original image

FIGURE 27-15

Example of JPEG distortion. Figure (a)
shows the original image, while (b) and (c)
shows restored images using compression
ratios of 10:1 and 45:1, respectively. The
high compression ratio used in (c) resultsin
each 8x8 pixel group being represented by
less than 12 hits.
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MPEG

c. With 45:1 compression

Why isthe DCT better than the Fourier transform for image compression? The
main reason is that the DCT has one-half cycle basis functions, i.e., §[0,1] and
S[1,0]. Asshown in Fig. 27-10, these gently slope from one side of the array
to the other. In comparison, the lowest frequencies in the Fourier transform
form one complete cycle. Images nearly always contain regions where the
brightness is gradually changing over a region. Using a basis function that
matches this basic pattern allows for better compression.

MPEG is acompression standard for digital video sequences, such as used in
computer video and digital television networks. In addition, MPEG also
provides for the compression of the sound track associated with the video. The
name comes from its originating organization, the Moving Pictures Experts
Group. If you think JPEG is complicated, MPEG is a nightmare! MPEG is
something you buy, not try to write yourself. The future of this technology is
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to encode the compression and uncompression algorithms directly into
integrated circuits. The potential of MPEG is vast. Think of thousands of
video channels being carried on a single optical fiber running into your home.
Thisis a key technology of the 21st century.

In addition to reducing the data rate, MPEG has several important features.
The movie can be played forward or in reverse, and at either normal or fast
speed. The encoded information is random access, that is, any individual
frame in the sequence can be easily displayed as a still picture. This goes
along with making the movie editable, meaning that short segments from the
movie can be encoded only with reference to themselves, not the entire
sequence. MPEG is designed to be robust to errors. The last thing you want
isfor asingle bit error to cause a disruption of the movie.

The approach used by MPEG can be divided into two types of compression:
within-the-frame and between-frame. Within-the-frame compression means
that individual frames making up the video sequence are encoded as if they
were ordinary still images. This compression is preformed using the JPEG
standard, with just a few variations. In MPEG terminology, a frame that has
been encoded in this way is called an intra-coded or | -picture.

Most of the pixels in avideo sequence change very little from one frame to the
next. Unless the camera is moving, most of the image is composed of a
background that remains constant over dozens of frames. MPEG takes
advantage of this with a sophisticated form of delta encoding to compress the
redundant information between frames. After compressing one of the frames
as an |-picture, MPEG encodes successive frames as predictive-coded or P-
pictures. That is, only the pixels that have changed since the I-picture are
included in the P-picture.

While these two compression schemes form the backbone of MPEG, the actual
implementation is immensely more sophisticated than described here. For
example, a P-picture can be referenced to an |-picture that has been shifted,
accounting for motion of objects in the image sequence. There are also
bidirectional predictive-coded or B-pictures. These are referenced to both a
previous and a future I-picture. This handles regions in the image that
gradually change over many of frames. The individual frames can also be
stored out-of-order in the compressed data to facilitate the proper sequencing
of the |, P, and B-pictures. The addition of color and sound makes this al the
more complicated.

The main distortion associated with MPEG occurs when large sections of the
image change quickly. In effect, a burst of information is needed to keep up
with the rapidly changing scenes. If the datarate is fixed, the viewer notices
"blocky" patterns when changing from one scene to the next. This can be
minimized in networks that transmit multiple video channels simultaneously,
such as cable television. The sudden burst of information needed to support a
rapidly changing scene in one video channel, is averaged with the modest
requirements of the relatively static scenes in the other channels.
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Neural Networks (and more!)

Traditional DSP is based on algorithms, changing data from one form to another through step-by-
step procedures. Most of these techniques also need parameters to operate. For example:
recursive filters use recursion coefficients, feature detection can be implemented by correlation
and thresholds, an image display depends on the brightness and contrast settings, etc.
Algorithms describe what is to be done, while parameters provide a benchmark to judge the data.
The proper selection of parameters is often more important than the algorithm itself. Neural
networks take this idea to the extreme by using very simple algorithms, but many highly
optimized parameters. Thisis arevolutionary departure from the traditional mainstays of science
and engineering: mathematical logic and theorizing followed by experimentation. Neural networks
replace these problem solving strategies with trial & error, pragmatic solutions, and a "this works
better than that" methodology. This chapter presents a variety of issues regarding parameter
selection in both neural networks and more traditional DSP algorithms.

Target Detection

Scientists and engineers often need to know if a particular object or condition
is present. For instance, geophysicists explore the earth for oil, physicians
examine patients for disease, astronomers search the universe for extra-
terrestrial intelligence, etc. These problems usually involve comparing the
acquired data against a threshold. If the threshold is exceeded, the tar get (the
object or condition being sought) is deemed present.

For example, suppose you invent a device for detecting cancer in humans. The
apparatus is waved over a patient, and a number between 0 and 30 pops up on
the video screen. Low numbers correspond to healthy subjects, while high
numbers indicate that cancerous tissue is present. You find that the device
works quite well, but isn't perfect and occasionally makes an error. The
guestion is; how do you use this system to the benefit of the patient being
examined?

451
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Figure 26-1 illustrates a systematic way of analyzing this situation. Suppose
the device is tested on two groups: several hundred volunteers known to be
healthy (nontarget), and several hundred volunteers known to have cancer
(target). Figures (a) & (b) show these test results displayed as histograms.
The healthy subjects generally produce a lower number than those that have
cancer (good), but there is some overlap between the two distributions (bad).

As discussed in Chapter 2, the histogram can be used as an estimate of the
probability distribution function (pdf), as shown in (c). For instance,
imagine that the device is used on a randomly chosen healthy subject. From (c),
there is about an 8% chance that the test result will be 3, about a 1% chance
that it will be 18, etc. (This example does not specify if the output is areal
number, requiring a pdf, or an integer, requiring a pmf. Don't worry about it
here; it isn't important).

Now, think about what happens when the device is used on a patient of
unknown health. For example, if a person we have never seen before receives
avalue of 15, what can we conclude? Do they have cancer or not? We know
that the probability of a healthy person generating a 15 is 2.1%. Likewise,
there is a 0.7% chance that a person with cancer will produce a 15. If no other
information is available, we would conclude that the subject is three times as
likely not to have cancer, as to have cancer. That is, the test result of 15
implies a 25% probability that the subject is from the target group. This method
can be generalized to form the curve in (d), the probability of the subject
having cancer based only on the number produced by the device
[mathematically, pdf, /(pdf, + pdf) ].

If we stopped the analysis at this point, we would be making one of the most
common (and serious) errors in target detection. Another source of information
must usually be taken into account to make the curve in (d) meaningful. This
is the relative number of targets versus nontargets in the population to be
tested. For instance, we may find that only one in one-thousand people have
the cancer we are trying to detect. To include this in the analysis, the
amplitude of the nontarget pdf in (c) is adjusted so that the area under the curve
is0.999. Likewise, the amplitude of the target pdf is adjusted to make the area
under the curve be 0.001. Figure (d) is then calculated as before to give the
probability that a patient has cancer.

Neglecting this information is a serious error because it greatly affects how the
test results are interpreted. In other words, the curve in figure (d) is drastically
altered when the prevalence information is included. For instance, if the
fraction of the population having cancer is 0.001, a test result of 15
corresponds to only a 0.025% probability that this patient has cancer. Thisis
very different from the 25% probability found by relying on the output of the
machine alone.

This method of converting the output value into a probability can be useful
for understanding the problem, but it is not the main way that target
detection is accomplished. Most applications require a yes/no decision on
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FIGURE 26-1

Probability of target detection. Figures(a) and (b) shows histograms of target and nontarget groups with respect
to some parameter value. From these histograms, the probability distribution functions of the two groups can be
estimated, as shownin (c). Using only thisinformation, the curvein (d) can be cal culated, giving the probability
that atarget has been found, based on a specific value of the parameter.

the presence of atarget, since yes will result in one action and no will result
in another. This is done by comparing the output value of the test to a
threshold. If the output is above the threshold, the test is said to be positive,
indicating that the target is present. If the output is below the threshold, the
test is said to be negative, indicating that the target is not present. In our
cancer example, a negative test result means that the patient is told they are
healthy, and sent home. When the test result is positive, additional tests will
be performed, such as obtaining a sample of the tissue by insertion of a biopsy
needle.

Since the target and nontarget distributions overlap, some test results will
not be correct. That is, some patients sent home will actually have cancer,
and some patients sent for additional tests will be healthy. In the jargon of
target detection, a correct classification is called true, while an incorrect
classification is called false. For example, if a patient has cancer, and the
test properly detects the condition, it is said to be a true-positive.
Likewise, if a patient does not have cancer, and the test indicates that
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cancer is not present, it is said to be a true-negative. A false-positive
occurs when the patient does not have cancer, but the test erroneously
indicates that they do. This results in needless worry, and the pain and
expense of additional tests. An even worse scenario occurs with the fal se-
negative, where cancer is present, but the test indicates the patient is
healthy. Aswe all know, untreated cancer can cause many health problems,
including premature death.

The human suffering resulting from these two types of errors makes the
threshold selection a delicate balancing act. How many false-positives can
be tolerated to reduce the number of false-negatives? Figure 26-2 shows
a graphical way of evaluating this problem, the ROC curve (short for
Receiver Operating Characteristic). The ROC curve plots the percent of
target signals reported as positive (higher is better), against the percent of
nontarget signals erroneously reported as positive (lower is better), for
various values of the threshold. In other words, each point on the ROC
curve represents one possible tradeoff of true-positive and false-positive
performance.

Figures (a) through (d) show four settings of the threshold in our cancer
detection example. For instance, look at (b) where the threshold is set at 17.
Remember, every test that produces an output value greater than the threshold
is reported as a positive result. About 13% of the area of the nontarget
distribution is greater than the threshold (i.e., to the right of the threshold). Of
all the patients that do not have cancer, 87% will be reported as negative (i.e.,
atrue-negative), while 13% will be reported as positive (i.e., a false-positive).
In comparison, about 80% of the area of the target distribution is greater than
the threshold. This means that 80% of those that have cancer will generate a
positive test result (i.e., atrue-positive). The other 20% that have cancer will
be incorrectly reported as a negative (i.e., afalse-negative). As shown in the
ROC curve in (b), this threshold results in a point on the curve at: %
nontargets positive = 13%, and % targets positive = 80%.

The more efficient the detection process, the more the ROC curve will bend
toward the upper-left corner of the graph. Pure guessing results in a straight
line at a 45° diagonal. Setting the threshold relatively low, as shown in (a),
results in nearly all the target signals being detected. This comes at the price
of many false alarms (false-positives). As illustrated in (d), setting the
threshold relatively high provides the reverse situation: few false alarms, but
many missed targets.

These analysis techniques are useful in understanding the consequences of
threshold selection, but the final decision is based on what some human will
accept. Suppose you initially set the threshold of the cancer detection
apparatus to some value you feel is appropriate. After many patients have
been screened with the system, you speak with a dozen or so patients that
have been subjected to false-positives. Hearing how your system has
unnecessarily disrupted the lives of these people affects you deeply,
motivating you to increase the threshold. Eventually you encounter a
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FIGURE 26-3

Example of a two-parameter space. The
target (») and nontarget (OJ) groups are
completely separate in two-dimensions;
however, they overlap in each individual
parameter. This overlap is shown by the
one-dimensional pdfs along each of the

parameter axes.
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situation that makes you feel even worse: you speak with a patient who is
terminally ill with a cancer that your system failed to detect. Y ou respond to
this difficult experience by greatly lowering the threshold. As time goes on
and these events are repeated many times, the threshold gradually moves to an
equilibriumvalue. That is, the false-positive rate multiplied by a significance
factor (lowering the threshold) is balanced by the false-negative rate multiplied
by another significance factor (raising the threshold).

This analysis can be extended to devices that provide more than one output.
For example, suppose that a cancer detection system operates by taking an x-
ray image of the subject, followed by automated image analysis algorithms to
identify tumors. The algorithms identify suspicious regions, and then measure
key characteristics to aid in the evaluation. For instance, suppose we measure
the diameter of the suspect region (parameter 1) and its brightness in the image
(parameter 2). Further suppose that our research indicates that tumors are
generally larger and brighter than normal tissue. As afirst try, we could go
through the previously presented ROC analysis for each parameter, and find an
acceptable threshold for each. We could then classify a test as positive only
if it met both criteria: parameter 1 greater than some threshold and parameter
2 greater than another threshold.

This technique of thresholding the parameters separately and then invoking
logic functions (AND, OR, etc.) is very common. Nevertheless, it is very
inefficient, and much better methods are available. Figure 26-3 shows why
thisisthe case. In this figure, each triangle represents a single occurrence of
a target (a patient with cancer), plotted at a location that corresponds to the
value of its two parameters. Likewise, each square represents a single
occurrence of a nontarget (a patient without cancer). As shown in the pdf
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A target
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FIGURE 26-4

Example of athree-parameter space.
Just as atwo-parameter spaceformsa
plane surface, athree parameter space
can be graphically represented using
the conventional x, y, and z axes.
Separation of athree-parameter space
into regionsrequires adividing plane,
or acurved surface.

parameter 3 — >

graph on the side of each axis, both parameters have a large overlap between
the target and nontarget distributions. In other words, each parameter, taken
individually, is a poor predictor of cancer. Combining the two parameters with
simple logic functions would only provide a small improvement. This is
especialy interesting since the two parameters contain information to perfectly
separate the targets from the nontargets. This is done by drawing a diagonal
line between the two groups, as shown in the figure.

In the jargon of the field, this type of coordinate system is called a
parameter space. For example, the two-dimensional plane in this example
could be called a diameter-brightness space. The ideais that targets will
occupy one region of the parameter space, while nontargets will occupy
another. Separation between the two regions may be as simple as a straight
line, or as complicated as closed regions with irregular borders. Figure 26-
4 shows the next level of complexity, a three-parameter space being
represented on the x, y and z axes. For example, this might correspond to
a cancer detection system that measures diameter, brightness, and some
third parameter, say, edge sharpness. Just asin the two-dimensional case,
the important idea is that the members of the target and nontarget groups
will (hopefully) occupy different regions of the space, allowing the two to
be separated. In three dimensions, regions are separated by planes and
curved surfaces. The term hyperspace (over, above, or beyond normal
space) is often used to describe parameter spaces with more than three
dimensions. Mathematically, hyperspaces are no different from one, two
and three-dimensional spaces; however, they have the practical problem of
not being able to be displayed in a graphical form in our three-dimensional
universe.

The threshold selected for a single parameter problem cannot (usually) be
classified as right or wrong. This is because each threshold value results in
a unique combination of false-positives and false-negatives, i.e., some point
along the ROC curve. This is trading one goal for another, and has no
absolutely correct answer. On the other hand, parameter spaces with two or
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more parameters can definitely have wrong divisions between regions. For
instance, imagine increasing the number of data pointsin Fig. 26-3, revealing
a small overlap between the target and nontarget groups. It would be possible
to move the threshold line between the groups to trade the number of false-
positives against the number of false-negatives. That is, the diagonal line
would be moved toward the top-right, or the bottom-left. However, it would be
wrong to rotate the line, because it would increase both types of errors.

As suggested by these examples, the conventional approach to target
detection (sometimes called pattern recognition) is a two step process. The
first step is called feature extraction. This uses algorithms to reduce the
raw data to a few parameters, such as diameter, brightness, edge sharpness,
etc. These parameters are often called features or classifiers. Feature
extraction is needed to reduce the amount of data. For example, a medical
X-ray image may contain more than a million pixels. The goal of feature
extraction is to distill the information into a more concentrated and
manageable form. This type of algorithm development is more of an art
than a science. It takes a great deal of experience and skill to look at a
problem and say: "These are the classifiers that best capture the
information." Trial-and-error plays a significant role.

In the second step, an evaluation is made of the classifiers to determine if
the target is present or not. In other words, some method is used to divide
the parameter space into a region that corresponds to the targets, and a
region that corresponds to the nontargets. Thisis quite straightforward for
one and two-parameter spaces; the known data points are plotted on a graph
(such as Fig. 26-3), and the regions separated by eye. The division isthen
written into a computer program as an equation, or some other way of
defining one region from another. In principle, this same technique can be
applied to a three-dimensional parameter space. The problem is, three-
dimensional graphs are very difficult for humans to understand and
visualize (such as Fig. 26-4). Caution: Don't try this in hyperspace; your
brain will explode!

In short, we need a machine that can carry out a multi-parameter space
division, according to examples of target and nontarget signals. This ideal
target detection system is remarkably close to the main topic of this chapter, the
neural network.

Neural Network Architecture

Humans and other animals process information with neural networks. These
are formed from trillions of neurons (nerve cells) exchanging brief electrical
pulses called action potentials. Computer algorithms that mimic these
biological structures are formally called artificial neural networks to
distinguish them from the squishy things inside of animals. However, most
scientists and engineers are not this formal and use the term neural network to
include both biological and nonbiological systems.
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Neural network research is motivated by two desires: to obtain a better
understanding of the human brain, and to develop computers that can deal with
abstract and poorly defined problems. For example, conventional computers
have trouble understanding speech and recognizing people's faces. In
comparison, humans do extremely well at these tasks.

Many different neural network structures have been tried, some based on
imitating what a biologist sees under the microscope, some based on a more
mathematical analysis of the problem. The most commonly used structure is
shown in Fig. 26-5. This neural network is formed in three layers, called the
input layer, hidden layer, and output layer. Each layer consists of one or
more nodes, represented in this diagram by the small circles. The lines
between the nodes indicate the flow of information from one node to the next.
In this particular type of neural network, the information flows only from the
input to the output (that is, from left-to-right). Other types of neural networks
have more intricate connections, such as feedback paths.

The nodes of the input layer are passive, meaning they do not modify the
data. They receive a single value on their input, and duplicate the value to

X1,

Information Flow
X1,

X1,

X1,

FIGURE 26-5

Neural network architecture. Thisisthe
most common structure for neural
networks: three layers with full inter-
connection. The input layer nodes are
passive, doing nothing but relaying the
values from their single input to their
multiple outputs. In comparison, the
nodes of the hidden and output layers
are active, modifying the signals in
accordance with Fig. 26-6. The action
of this neural network is determined by
the weights applied in the hidden and
output nodes.
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their multiple outputs. In comparison, the nodes of the hidden and output layer
are active. This means they modify the data as shown in Fig. 26-6. The
variables: X1,, X1, --X1,. hold the data to be evaluated (see Fig. 26-5). For
example, they may be pixel values from an image, samples from an audio
signal, stock market prices on successive days, etc. They may also be the
output of some other algorithm, such as the classifiersin our cancer detection
example: diameter, brightness, edge sharpness, etc.

Each value from the input layer is duplicated and sent to all of the hidden
nodes. Thisiscalled afully interconnected structure. As shown in Fig. 26-
6, the values entering a hidden node are multiplied by weights, a set of
predetermined numbers stored in the program. The weighted inputs are then
added to produce a single number. This is shown in the diagram by the
symbol, X. Before leaving the node, this number is passed through a nonlinear
mathematical function called a sigmoid. Thisisan"s"' shaped curve that limits
the node's output. That is, the input to the sigmoid is a value between
- and +eo, While its output can only be between 0 and 1.

The outputs from the hidden layer are represented in the flow diagram (Fig 26-
5) by the variables: X2,, X2,, X2, and X2,. Just as before, each of these values
is duplicated and applied to the next layer. The active nodes of the output
layer combine and modify the data to produce the two output values of this
network, X3, and X3,.

Neural networks can have any number of layers, and any number of nodes per
layer. Most applications use the three layer structure with a maximum of a few
hundred input nodes. The hidden layer is usually about 10% the size of the
input layer. In the case of target detection, the output layer only needs a single
node. The output of this node is thresholded to provide a positive or negative
indication of the target's presence or absence in the input data.

Table 26-1 is a program to carry out the flow diagram of Fig. 26-5. The key
point is that this architecture is very simple and very generalized. This same
flow diagram can be used for many problems, regardliess of their particular
quirks. The ability of the neural network to provide useful data manipulation
lies in the proper selection of the weights. This is a dramatic departure from
conventional information processing where solutions are described in step-by-
step procedures.

As an example, imagine a neural network for recognizing objects in a sonar
signal. Suppose that 1000 samples from the signal are stored in a computer.
How does the computer determine if these data represent a submarine,
whale, undersea mountain, or nothing at all? Conventional DSP would
approach this problem with mathematics and algorithms, such as correlation
and frequency spectrum analysis. With a neural network, the 1000 samples
are simply fed into the input layer, resulting in values popping from the
output layer. By selecting the proper weights, the output can be configured
to report a wide range of information. For instance, there might be outputs
for: submarine (yes/no), whale (yes/no), undersea mountain (yes/no), etc.
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FIGURE 26-6

Neural network active node. Thisis a
flow diagram of the active nodes used in
the hidden and output layers of the neural
network. Each input is multiplied by a
weight (the wy values), and then summed.
This produces asingle value that is passed
through an "s" shaped nonlinear function
called asigmoid. The sigmoid functionis
shown in more detail in Fig. 26-7.

With other weights, the outputs might classify the objects as. metal or non-
metal, biological or nonbiological, enemy or aly, etc. No algorithms, no
rules, no procedures; only arelationship between the input and output dictated
by the values of the weights selected.

100 'NEURAL NETWORK (FOR THE FLOW DIAGRAM IN FIG. 26-5)

110

120 DIM X1[15] 'holds the input values

130 DIM X2[4] 'holds the values exiting the hidden layer

140 DIM X3[2] 'holds the values exiting the output layer

150 DIM WH[4,15] 'holds the hidden layer weights

160 DIM WO[2,4] 'holds the output layer weights

170

180 GOSUB X XXX 'mythical subroutine to load X1[ ] with the input data
190 GOSUB X XXX 'mythical subroutine to load the weights, WH[ , ] & WO , ]
200"

210 'FIND THE HIDDEN NODE VALUES, X2[ ]
220FOR % =1TO4 'loop for each hidden layer node

230 ACC=0 'clear the accumulator variable, ACC

240 FORI1%=1TO 15 '‘weight and sum each input node

250 ACC = ACC + X1[1%] * WH[J%,1%]
260 NEXT 1%
270 X2[J%] =1/ (1 +EXP(-ACC)) 'passsummed value through the sigmoid

280 NEXT J%

290"

300" 'FIND THE OUTPUT NODE VALUES, X3[ ]
310FOR 3% =1TO?2 'loop for each output layer node

320 ACC=0 'clear the accumulator variable, ACC

330 FORI1%=1TO4 'weight and sum each hidden node

340 ACC=ACC + X2[1%] * WO[I%,1%]
350 NEXT 1%
360 X3[J%] =1/(1+EXP(-ACC)) 'passsummed value through the sigmoid
370 NEXT J%
380"
390 END
TABLE 26-1
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FIGURE 26-7
The sigmoid function and its derivative. Equations 26-1 and 26-2 generate these curves.
Figure 26-7a shows a closer look at the sigmoid function, mathematically
described by the equation:
EQUATION 26-1 1
The sigmoid function. Thisisused in s(x) =
neural networks as a smooth threshold. lre*

Thisfunction is graphed in Fig. 26-7a.

The exact shape of the sigmoid is not important, only that it is a smooth
threshold. For comparison, a simple threshold produces a value of one
when x >0, and a value of zero when x <0. The sigmoid performs this same
basic thresholding function, but is also differentiable, as shown in Fig. 26-7b.
While the derivative is not used in the flow diagram (Fig. 25-5), it is acritical
part of finding the proper weights to use. More about this shortly. An
advantage of the sigmoid is that there is a shortcut to calculating the value of
its derivative:

EQUATION 26-2

First derivative of the sigmoid function. S'(X) = S(X) [1 - S(X)]
Thisis calculated by using the value of

the sigmoid function itself.

For example, if x= 0, then s(x) = 0.5 (by Eq. 26-1), and the first derivative
is calculated: s’(x) = 0.5(1 - 0.5) = 0.25. Thisisn't acritical concept, just a
trick to make the algebra shorter.

Wouldn't the neural network be more flexible if the sigmoid could be adjusted
left-or-right, making it centered on some other value than X = 0? The answer
isyes, and most neural networks alow for this. It isvery simple to implement;
an additional node is added to the input layer, with its input always having a
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value of one. When this is multiplied by the weights of the hidden layer,
it provides a bias (DC offset) to each sigmoid. This addition is called a
bias node. It istreated the same as the other nodes, except for the constant
input.

Can neural networks be made without a sigmoid or similar nonlinearity? To
answer this, look at the three-layer network of Fig. 26-5. If the sigmoids were
not present, the three layers would collapse into only two layers. In other
words, the summations and weights of the hidden and output layers could be
combined into a single layer, resulting in only a two-layer network.

Why Does It Work?

The weights required to make a neural network carry out a particular task are
found by a learning algorithm, together with examples of how the system
should operate. For instance, the examples in the sonar problem would be a
database of several hundred (or more) of the 1000 sample segments. Some of
the example segments would correspond to submarines, others to whales, others
to random noise, etc. The learning algorithm uses these examples to calculate
a set of weights appropriate for the task at hand. The term learning is widely
used in the neural network field to describe this process; however, a better
description might be: determining an optimized set of weights based on the
statistics of the examples. Regardless of what the method is called, the
resulting weights are virtually impossible for humans to understand. Patterns
may be observable in some rare cases, but generally they appear to be random
numbers. A neural network using these weights can be observed to have the
proper input/output relationship, but why these particular weights work is quite
baffling. This mystic quality of neural networks has caused many scientists
and engineers to shy away from them. Remember all those science fiction
movies of renegade computers taking over the earth?

In spite of this, it is common to hear neural network advocates make statements
such as. "neural networks are well understood." To explore this claim, we
will first show that it is possible to pick neural network weights through
traditional DSP methods. Next, we will demonstrate that the learning
algorithms provide better solutions than the traditional techniques. While this
doesn't explain why a particular set of weights works, it does provide
confidence in the method.

In the most sophisticated view, the neural network is a method of labeling the
various regions in parameter space. For example, consider the sonar system
neural network with 1000 inputs and a single output. With proper weight
selection, the output will be near one if the input signal is an echo from a
submarine, and near zero if the input is only noise. This forms a parameter
hyperspace of 1000 dimensions. The neural network is a method of assigning
a value to each location in this hyperspace. That is, the 1000 input values
define a location in the hyperspace, while the output of the neural network
provides the value at that location. A look-up table could perform this task
perfectly, having an output value stored for each possible input address. The
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difference is that the neural network calculates the value at each location
(address), rather than the impossibly large task of storing each value. In fact,
neural network architectures are often evaluated by how well they separate the
hyperspace for a given number of weights.

This approach also provides a clue to the number of nodes required in the
hidden layer. A parameter space of N dimensions requires N numbers to
specify alocation. Identifying aregion in the hyperspace requires 2N values
(i.e., a minimum and maximum value along each axis defines a hyperspace
rectangular solid). For instance, these simple calculations would indicate that
a neural network with 1000 inputs needs 2000 weights to identify one region
of the hyperspace from another. In afully interconnected network, this would
require two hidden nodes. The number of regions needed depends on the
particular problem, but can be expected to be far less than the number of
dimensions in the parameter space. While thisis only a crude approximation,
it generally explains why most neural networks can operate with a hidden layer
of 2% to 30% the size of the input layer.

A completely different way of understanding neural networks uses the DSP
concept of correlation. As discussed in Chapter 7, correlation is the
optimal way of detecting if a known pattern is contained within a signal.
It is carried out by multiplying the signal with the pattern being looked for,
and adding the products. The higher the sum, the more the signal resembles
the pattern. Now, examine Fig. 26-5 and think of each hidden node as
looking for a specific pattern in the input data. That is, each of the hidden
nodes correlates the input data with the set of weights associated with that
hidden node. If the pattern is present, the sum passed to the sigmoid will
be large, otherwise it will be small.

The action of the sigmoid is quite interesting in this viewpoint. Look back at
Fig. 26-1d and notice that the probability curve separating two bell shaped
distributions resembles a sigmoid. If we were manually designing a neural
network, we could make the output of each hidden node be the fractional
probability that a specific pattern is present in the input data. The output layer
repeats this operation, making the entire three-layer structure a correlation of
correlations, a network that looks for patterns of patterns.

Conventional DSP is based on two techniques, convolution and Fourier
analysis. It is reassuring that neural networks can carry out both these
operations, plus much more. Imagine an N sample signal being filtered to
produce another N sample signal. According to the output side view of
convolution, each sample in the output signal is a weighted sum of samples
from the input. Now, imagine a two-layer neural network with N nodes in each
layer. The value produced by each output layer node is also a weighted sum
of the input values. If each output layer node uses the same weights as all the
other output nodes, the network will implement linear convolution. Likewise,
the DFT can be calculated with a two layer neural network with N nodes in
each layer. Each output layer node finds the amplitude of one frequency
component. Thisis done by making the weights of each output layer node the
same as the sinusoid being looked for. The resulting network correlates the
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input signal with each of the basis function sinusoids, thus calculating the DFT.
Of course, atwo-layer neural network is much less powerful than the standard
three layer architecture. This means neural networks can carry out nonlinear
as well as linear processing.

Suppose that one of these conventional DSP strategies is used to design the
weights of a neural network. Can it be claimed that the network is optimal ?
Traditional DSP algorithms are usually based on assumptions about the
characteristics of the input signal. For instance, Wiener filtering is optimal for
maximizing the signal-to-noise ratio assuming the signal and noise spectra are
both known; correlation is optimal for detecting targets assuming the noise is
white; deconvolution counteracts an undesired convolution assuming the
deconvolution kernel is the inverse of the original convolution kernel, etc. The
problem is, scientist and engineer's seldom have a perfect knowledge of the
input signals that will be encountered. While the underlying mathematics may
be elegant, the overall performance is limited by how well the data are
understood.

For instance, imagine testing a traditional DSP algorithm with actual input
signals. Next, repeat the test with the algorithm changed slightly, say, by
increasing one of the parameters by one percent. |f the second test result is
better than the first, the original agorithm is not optimized for the task at hand.
Nearly all conventional DSP algorithms can be significantly improved by a
trial-and-error evaluation of small changes to the algorithm's parameters and
procedures. Thisis the strategy of the neural network.

Neural Network

Neural network design can best be explained with an example. Figure 26-8
shows the problem we will attack, identifying individual letters in an image of
text. This pattern recognition task has received much attention. It is easy
enough that many approaches achieve partia success, but difficult enough that
there are no perfect solutions. Many successful commercial products have been
based on this problem, such as: reading the addresses on letters for postal
routing, document entry into word processors, etc.

The first step in developing a neural network is to create a database of
examples. For the text recognition problem, this is accomplished by
printing the 26 capital letters. A,B,C,D - Y,Z, 50 times on a sheet of paper.
Next, these 1300 letters are converted into a digital image by using one of
the many scanning devices available for personal computers. This large
digital image is then divided into small images of 10x10 pixels, each
containing a single letter. This information is stored as a 1.3 Megabyte
database: 1300 images; 100 pixels per image; 8 bits per pixel. We will use
the first 260 images in this database to train the neural network (i.e.,
determine the weights), and the remainder to test its performance. The
database must also contain a way of identifying the letter contained in each
image. For instance, an additional byte could be added to each 10x10
image, containing the letter's ASCII code. In another scheme, the position
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FIGURE 26-8

Example image of text. Identifying lettersin
images of text is one of the classic pattern
recognition problems. In this example, each
letter is contained in a 10x10 pixel image,
with 256 gray levels per pixel. The database
used to train and test the example neural
network consists of 50 sets of the 26 capital
letters, for atotal of 1300 images. Theimages
shown here are a portion of this database.
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of each 10x10 image in the database could indicate what the letter is. For
example, images 0 to 49 might all be an "A", images 50-99 might all be a
"B", etc.

For this demonstration, the neural network will be designed for an arbitrary
task: determine which of the 10x10 images contains a vowel, i.e., A, E, |, O,
or U. This may not have any practical application, but it does illustrate the
ability of the neural network to learn very abstract pattern recognition
problems. By including ten examples of each letter in the training set, the
network will (hopefully) learn the key features that distinguish the target from
the nontarget images.

The neural network used in this example is the traditional three-layer, fully
interconnected architecture, as shown in Figs. 26-5 and 26-6. There are 101
nodes in the input layer (100 pixel values plus a bias node), 10 nodes in the
hidden layer, and 1 node in the output layer. When a 100 pixel image is
applied to the input of the network, we want the output value to be close to one
if avowel is present, and near zero if avowel is not present. Don't be worried
that the input signal was acquired as a two-dimensional array (10x10), while
the input to the neural network is a one-dimensional array. This is your
understanding of how the pixel values are interrelated; the neural network will
find relationships of its own.

Table 26-2 shows the main program for calculating the neural network
weights, with Table 26-3 containing three subroutines called from the main
program. The array elements. X1[1] through X1[100], hold the input layer
values. In addition, X1[101] always holds a value of 1, providing the input
to the bias node. The output values from the hidden nodes are contained
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100 'NEURAL NETWORK TRAINING (Determination of weights)

110"

120

130 MU = .000005

140 DIM X1[101]

150 DIM X2[10]

160 DIM WH[10,101]

170 DIM WO[10]

180"

190 FOR H% = 1 TO 10

200 WO[H%] = (RND-0.5)
210 FORI%=1TO 101
220  WH[H%,1%] = (RND-0.5)/1000
230 NEXT 1%

240 NEXT H%

250"

260"

270 FOR ITER% = 1 TO 800
280"

290 ESUM =0

300

310 FORLETTER%=1TO 260
320 GOSUB 1000

330 GOSUB 2000

340 ESUM = ESUM + ELET/2
350 GOSUB 3000

360 NEXT LETTER%

370

380 PRINT ITER% ESUM
390"

400 NEXT ITER%

410"

420 GOSUB XXXX

430 END

'INITIALIZE

'iteration step size

'holds the input layer signal + biasterm
'holds the hidden layer signal

'holds hidden layer weights

'holds output layer weights

'SET WEIGHTS TO RANDOM VALUES

‘output layer weights: -0.5to 0.5
'hidden layer weights: -0.0005 to 0.0005

'ITERATION LOOP

'loop for 800 iterations

‘clear the error accumulator, ESUM
'loop for each letter in the training set
'load X1[ ] with training set

'find the error for this letter, ELET

‘accumulate error for thisiteration
'find the new weights

'print the progress to the video screen

'mythical subroutine to save the weights

TABLE 26-2

in the array elements: X2[1] through X2[10]. The variable, X3, contains the
network's output value. The weights of the hidden layer are contained in the
array, WH[ , ], where the first index identifies the hidden node (1 to 10), and
the second index is the input layer node (1 to 101). The weights of the output
layer are held in WO[1] to WO[10]. This makes atotal of 1020 weight values
that define how the network will operate.

Thefirst action of the program is to set each weight to an arbitrary initial value
by using a random number generator. As shown in lines 190 to 240, the hidden
layer weights are assigned initial values between -0.0005 and 0.0005, while the
output layer weights are between -0.5 and 0.5. These ranges are chosen to be
the same order of magnitude that the final weights must be. This is based on:
(1) the range of valuesin the input signal, (2) the number of inputs summed at
each node, and (3) the range of values over which the sigmoid is active, an
input of about -5<x <5, and an output of 0 to 1. For instance, when 101
inputs with atypical value of 100 are multiplied by the typical weight value of
0.0002, the sum of the products is about 2, which is in the active range of the

sigmoid's input.
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If we evaluated the performance of the neural network using these random
weights, we would expect it to be the same as random guessing. The learning
algorithm improves the performance of the network by gradually changing each
weight in the proper direction. Thisis called an iterative procedure, and is
controlled in the program by the FOR-NEXT loop in lines 270-400. Each
iteration makes the weights dightly more efficient at separating the target from
the nontarget examples. The iteration loop is usually carried out until no
further improvement is being made. In typical neural networks, this may be
anywhere from ten to ten-thousand iterations, but a few hundred is common.
This example carries out 800 iterations.

In order for this iterative strategy to work, there must be a single parameter
that describes how well the system is currently performing. The variable
ESUM (for error sum) serves this function in the program. The first action
inside the iteration loop is to set ESUM to zero (line 290) so that it can be
used as an accumulator. At the end of each iteration, the value of ESUM is
printed to the video screen (line 380), so that the operator can insure that
progress is being made. The value of ESUM will start high, and gradually
decrease as the neural network is trained to recognize the targets. Figure 26-9
shows examples of how ESUM decreases as the iterations proceed.

All 260 images in the training set are evaluated during each iteration, as
controlled by the FOR-NEXT loop in lines 310-360. Subroutine 1000 is used
to retrieve images from the database of examples. Since thisis not something
of particular interest here, we will only describe the parameters passed to and
from this subroutine. Subroutine 1000 is entered with the parameter,
LETTER%, being between 1 and 260. Upon return, the input node values,
X1[1] to X1[100], contain the pixel values for the image in the database
corresponding to LETTER%. The bias node value, X1[101], is always
returned with a constant value of one. Subroutine 1000 also returns another
parameter, CORRECT. This contains the desired output value of the network
for this particular letter. That is, if the letter in the image is a vowel,
CORRECT will be returned with a value of one. If the letter in the image is
not a vowel, CORRECT will be returned with a value of zero.

After the image being worked on is loaded into X1[1] through X1[100],
subroutine 2000 passes the data through the current neural network to
produce the output node value, X3. In other words, subroutine 2000 is the
same as the program in Table 26-1, except for a different number of nodes
in each layer. This subroutine also calculates how well the current network
identifies the letter as a target or a nontarget. In line 2210, the variable
ELET (for error-letter) is calculated as the difference between the output
value actually generated, X3, and the desired value, CORRECT. This
makes ELET a value between -1 and 1. All of the 260 values for ELET
are combined (line 340) to form ESUM, the total squared error of the
network for the entire training set.

Line 2220 shows an option that is often included when calculating the error:
assigning a different importance to the errors for targets and nontargets. For
example, recall the cancer example presented earlier in this chapter,
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1000 'SUBROUTINE TO LOAD X1] ] WITH IMAGES FROM THE DATABASE

1010 'Variables entering routine: LETTER%

1020 'Variables exiting routine: X1[1] to X1[100], X1[101] = 1, CORRECT

1030

1040 'The variable, LETTER%, between 1 and 260, indicates which image in the database is to be
1050 'returned in X1[1] to X1[100]. The bias node, X1[101], always has avalue of one. The variable,
1060 'CORRECT, has avalue of oneif the image being returned is a vowel, and zero otherwise.

1070 '(The details of this subroutine are unimportant, and not listed here).

1900 RETURN

2000 'SUBROUTINE TO CALCULATE THE ERROR WITH THE CURRENT WEIGHTS
2010 'Variables entering routine: X1[ ], X2[ ], WI[ , ], WH[ ], CORRECT
2020 'Variables exiting routine: ELET

2030

2040 'FIND THE HIDDEN NODE VALUES, X2[ ]
2050 FORH% =1TO 10 'loop for each hidden nodes

2060 ACC=0 ‘clear the accumulator

2070 FORI1%=1TO 101 '‘weight and sum each input node

2080 ACC = ACC + X1[1%] * WH[H%,1%]
2090 NEXT 1%

2100 X2[H%] =1/ (1+ EXP(-ACC)) 'pass summed val ue through sigmoid
2110 NEXT H%

2120

2130 'FIND THE OUTPUT VALUE: X3
2140ACC=0 ‘clear the accumulator

2150 FORH% =1TO 10 'weight and sum each hidden node

2160 ACC = ACC + X2[H%] * WO[H%]
2170 NEXT H%

2180 X3=1/(1+ EXP(-ACC)) 'pass summed val ue through sigmoid
2190

2200 'FIND ERROR FOR THISLETTER, ELET
2210 ELET = (CORRECT - X3) 'find the error

2220 IF CORRECT =1 THEN ELET = ELET*5 'give extraweight to targets

2230

2240 RETURN

3000 'SUBROUTINE TO FIND NEW WEIGHTS

3010 'Variables entering routine: X1[ ], X2[ ], X3, WI[,], WH[ ], ELET, MU
3020 'Variables exiting routine:  WI[ , ], WH[ ]

3030

3040 'FIND NEW WEIGHTS FOR INPUT NODES
3050 FORH% =1TO 10

3060 FORI1%=1TO 101

3070 SLOPEO = X3* (1-X3)

3080 SLOPEH = X2(H%) * (1 - X2[H%])

3090 DX3DW = X1[1%)] * SLOPEH * WO[H%] * SLOPEO

3100 WH[H%,1%] = WH[H%,1%] + DX3DW * ELET * MU

3110 NEXT 1%

3120 NEXT H%

3130

3140 'FIND NEW WEIGHTS FOR HIDDEN NODES

3150 FOR H% = 1 TO 10

3160 SLOPEO = X3* (1- X3)

3170 DX3DW = X2[H%] * SLOPEO

3180 WO[H%] = WO[H%] + DX3DW * ELET * MU
3190 NEXT H%

3200

3210 RETURN

TABLE 26-3

469
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and the consequences of making a false-positive error versus a false-negative
error. In the present example, we will arbitrarily declare that the error in
detecting a target is five times as bad as the error in detecting a nontarget. In
effect, this tells the network to do a better job with the targets, even if it hurts
the performance of the nontargets.

Subroutine 3000 is the heart of the neural network strategy, the algorithm
for changing the weights on each iteration. We will use an analogy to
explain the underlying mathematics. Consider the predicament of a military
paratrooper dropped behind enemy lines. He parachutes to the ground in
unfamiliar territory, only to find it is so dark he can't see more than a few
feet away. His orders are to proceed to the bottom of the nearest valley to
begin the remainder of his mission. The problem is, without being able to
see more than a few feet, how does he make his way to the valley floor?
Put another way, he needs an algorithm to adjust his x and y position on the
earth's surface in order to minimize his elevation. Thisis analogous to the
problem of adjusting the neural network weights, such that the network's
error, ESUM, is minimized.

We will look at two algorithms to solve this problem: evolution and
steepest descent. In evolution, the paratrooper takes a flying jump in some
random direction. If the new elevation is higher than the previous, he
curses and returns to his starting location, where he tries again. If the new
elevation is lower, he feels a measure of success, and repeats the process
from the new location. Eventually he will reach the bottom of the valley,
although in a very inefficient and haphazard path. This method is called
evolution because it is the same type of algorithm employed by nature in
biological evolution. Each new generation of a species has random
variations from the previous. If these differences are of benefit to the
species, they are more likely to be retained and passed to the next
generation. This is a result of the improvement allowing the animal to
receive more food, escape its enemies, produce more offspring, etc. If the
new trait is detrimental, the disadvantaged animal becomes lunch for some
predator, and the variation is discarded. In this sense, each new generation
is an iteration of the evolutionary optimization procedure.

When evolution is used as the training algorithm, each weight in the neural
network is slightly changed by adding the value from a random number
generator. If the modified weights make a better network (i.e., a lower value
for ESUM), the changes are retained, otherwise they are discarded. While this
works, it is very slow in converging. Thisisthe jargon used to describe that
continual improvement is being made toward an optimal solution (the bottom
of the valley). In simpler terms, the program is going to need days to reach
a solution, rather than minutes or hours.

Fortunately, the steepest descent algorithm is much faster. This is how the
paratrooper would naturally respond: evaluate which way is downhill, and
move in that direction. Think about the situation this way. The paratrooper
can move one step to the north, and record the change in elevation. After
returning to his original position, he can take one step to the east, and



FIGURE 26-9
Neural network convergence. This graph

value of ESUM) decreases as the iterations §
proceed. Three separate trials are shown, i
each starting with different initial weights.
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record that elevation change. Using these two values, he can determine
which direction is downhill. Suppose the paratrooper drops 10 cm when he
moves one step in the northern direction, and drops 20 cm when he moves
one step in the eastern direction. To travel directly downhill, he needs to
move along each axis an amount proportional to the slope along that axis.
In this case, he might move north by 10 steps and east by 20 steps. This
moves him down the steepest part of the slope a distance of
Y10%+ 20° = 22.4 steps. Alternatively, he could move in a straight line to
the new location, 22.4 steps along the diagonal. The key point is: the
steepest descent is achieved by moving along each axis a distance
proportional to the slope along that axis.

Subroutine 3000 implements this same steepest decent algorithm for the
network weights. Before entering subroutine 3000, one of the example
images has been applied to the input layer, and the information propagated
to the output. This means that the values for: X1[ ], X2[ ] and X3 are all
specified, as well as the current weight values: WH[ , ] and WO[ ]. In
addition, we know the error the network produces for this particular image,
ELET. The hidden layer weights are updated in lines 3050 to 3120, while
the output layer weights are modified in lines 3150 to 3190. Thisis done
by calculating the slope for each weight, and then changing each weight
by an amount proportional to that slope. In the paratrooper case, the slope
along an axis is found by moving a small distance along the axis (say, AX),
measuring the change in elevation (say, AE), and then dividing the two
(AE/AX). The slope of a neural network weight can be found in this same
way: add a small increment to the weight value (Aw), find the resulting
change in the output signal (AX3), and divide the two (AX3/Aw). Later in
this chapter we will look at an example that calculates the slope this way.
However, in the present example we will use a more efficient method.

Earlier we said that the nonlinearity (the sigmoid) needs to be differentiable.
Here is where we will use this property. If we know the slope at each point on
the nonlinearity, we can directly write an equation for the slope of each weight
(AX3/Aaw) without actually having to perturb it. Consider a specific weight, for
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example, WO[1], corresponding to the first input of the output node. Look at
the structure in Figs. 26-5 and 26-6, and ask: how will the output (X3) be
affected if this particular weight (w) is changed slightly, but everything elseis
kept the same? The answer is:

EQUATION 26-3 AX3
Slope of the output layer weights. = X2 [1] SLOPE
This equation is written for the AW o

weight, WO[1].

where SLOPE, is the first derivative of the output layer sigmoid, evaluated
where we are operating on its curve. In other words, SLOPE, describes how
much the output of the sigmoid changes in response to a change in the input to
the sigmoid. From Eq. 26-2, SLOPE, can be calculated from the current
output value of the sigmoid, X3. This calculation is shown in line 3160. In
line 3170, the slope for this weight is calculated via Eg. 26-3, and stored in the
variable DX3DW (i.e., AX3/Aw).

Using a similar analysis, the slope for a weight on the hidden layer, such as
WH][1,1], can be found by:

EQUATION 26-4 A

Slope of the hidden layer weights. X3 - X1 [1] SLOPE V\/O[l] SLOPE
This equation is written for the AW H1 o
weight, WH[1,1].

SLOPE,,, is the first derivative of the hidden layer sigmoid, evaluated where
we are operating on its curve. The other values, X1[1] and WOI1], are
simply constants that the weight change sees as it makes its way to the
output. In lines 3070 and 3080, the slopes of the sigmoids are calculated
using Eq. 26-2. The slope of the hidden layer weight, DX3DW is
calculated in line 3090 via Eq. 26-4.

Now that we know the slope of each of the weights, we can look at how each
weight is changed for the next iteration. The new value for each weight is
found by taking the current weight, and adding an amount that is proportional
to the slope:

EQUATION 26-5 AX3

Updating the weights. Each of the _

weights is adjusted by adding an Whew Woid * AW ELET MU
amount proportional to the slope of

the weight.

This calculation is carried out in line 3100 for the hidden layer, and line 3180
for the output layer. The proportionality constant consists of two factors,
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ELET, the error of the network for this particular input, and MU, a constant set
at the beginning of the program. To understand the need for ELET in this
calculation, imagine that an image placed on the input produces a small error
in the output signal. Next, imagine that another image applied to the input
produces a large output error. When adjusting the weights, we want to nudge
the network more for the second image than the first. If something is working
poorly, we want to change it; if it is working well, we want to leave it alone.
This is accomplished by changing each weight in proportion to the current
error, ELET.

To understand how MU affects the system, recall the example of the
paratrooper. Once he determines the downhill direction, he must decide how
far to proceed before reevaluating the slope of the terrain. By making this
distance short, one meter for example, he will be able to precisely follow the
contours of the terrain and always be moving in an optimal direction. The
problem is that he spends most of his time evaluating the slope, rather than
actually moving down the hill. In comparison, he could choose the distance
to be large, say 1000 meters. While this would allow the paratrooper to move
rapidly along the terrain, he might overshoot the downhill path. Too large of
a distance makes him jump all over the country-side without making the desired
progress.

In the neural network, MU controls how much the weights are changed on each
iteration. The value to use depends on the particular problem, being as low as
105, or as high as 0.1. From the analogy of the paratrooper, it can be expected
that too small of a value will cause the network to converge too slowly. In
comparison, too large of a value will cause the convergence to be erratic, and
will exhibit chaotic oscillation around the final solution. Unfortunately, the
way neural networks react to various values of MU can be difficult to
understand or predict. This makes it critical that the network error (i.e.,
ESUM) be monitored during the training, such as printing it to the video screen
at the end of each iteration. If the system isn't converging properly, stop the
program and try another value for MU.

Evaluating the Results

So, how does it work? The training program for vowel recognition was run
three times using different random values for the initial weights. About one
hour is required to complete the 800 iterations on a 100 MHz Pentium
personnel computer. Figure 26-9 shows how the error of the network,
ESUM, changes over this period. The gradual decline indicates that the
network is learning the task, and that the weights reach a near optimal value
after several hundred iterations. Each trial produces a different solution to
the problem, with a different final performance. This is analogous to the
paratrooper starting at different locations, and thereby ending up at the
bottom of different valleys. Just as some valleys are deeper than others,
some neural network solutions are better than others. This means that the
learning algorithm should be run several times, with the best of the group
taken as the final solution.



474

SOLCY T N I R )
ECY il T T T R T
Sl I ) 6 TN ) N I 1) 6

1

The Scientist and Engineer's Guide to Digital Sgnal Processing

3 4 5 6 7 8 9 10
hidden node

FIGURE 26-10
Example of neural network weights. In thisfigure, the hidden layer weightsfor the three solutions
aredisplayed asimages. All three of these solutions appear random to the human eye.

In Fig. 26-10, the hidden layer weights of the three solutions are displayed as
images. This means the first action taken by the neural network isto correlate
(multiply and sum) these images with the input signal. They look like random
noise! These weights values can be shown to work, but why they work is
something of a mystery. Here is something else to ponder. The human brain
is composed of about 100 trillion neurons, each with an average of 10,000
interconnections. |f we can't understand the simple neural network in this
example, how can we study something that is at least 100,000,000,000,000
times more complex? Thisis 21st century research.

Figure 26-11a shows a histogram of the neural network's output for the 260
letters in the training set. Remember, the weights were selected to make the
output near one for vowel images, and near zero otherwise. Separation has
been perfectly achieved, with no overlap between the two distributions. Also
notice that the vowel distribution is narrower than the nonvowel distribution.
This is because we declared the target error to be five times more important
than the nontarget error (see line 2220).

In comparison, Fig. 26-11b shows the histogram for images 261 through 1300
in the database. While the target and nontarget distributions are reasonably
distinct, they are not completely separated. Why does the neural network
perform better on the first 260 letters than the last 1040? Figure (a) is
cheating! It's easy to take atest if you have already seen the answers. In other
words, the neural network is recognizing specific images in the training set, not
the general patterns identifying vowels from nonvowels.

Figure 26-12 shows the performance of the three solutions, displayed as
ROC curves. Trial (b) provides a significantly better network than the
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FIGURE 26-11

Neural network performance. These are histograms of the neural network's output values, (a) for
thetraining data, and (b) for the remaining images. The neural network performs better with the
training data because it has already seen the answers to the test.

other two. Thisis amatter of random chance depending on the initial weights
used. At one threshold setting, the neural network designed in trial "b" can
detect 24 out of 25 targets (i.e., 96% of the vowel images), with a false alarm
rate of only 1 in 25 nontargets (i.e., 4% of the nonvowel images). Not bad
considering the abstract nature of this problem, and the very general solution

applied.

FIGURE 26-12

ROC analysis of neural network examples.
These curves compare three neural networks
designed to detect images of vowels. Tria (b)
is the best solution, shown by its curve being
closer to the upper-left corner of the graph.
This network can correctly detect 24 out of 25
targets, while providing only 1 false alarm for
each 25 nontargets. That is, there is a point
onthe ROC curveat x =4% and y = 96%

% vowels reported

O
S

100

0 10 20 30 40 50 60 70 80
% nonvowels reporte

[=%



476

The Scientist and Engineer's Guide to Digital Sgnal Processing

Some final comments on neural networks. Getting a neural network to converge
during training can be tricky. If the network error (ESUM) doesn't steadily
decrease, the program must be terminated, changed, and then restarted. This
may take several attempts before success is reached. Three things can be
changed to affect the convergence: (1) MU, (2) the magnitude of the initial
random weights, and (3) the number of hidden nodes (in the order they should
be changed).

The most critical item in neural network development is the validity of the
training examples. For instance, when new commercial products are being
developed, the only test data available are from prototypes, simulations,
educated guesses, etc. If a neural network is trained on this preliminary
information, it might not operate properly in the final application. Any
difference between the training database and the eventual data will degrade the
neural network's performance (Murphy's law for neural networks). Don't try
to second guess the neural network on this issue; you can't!

Recursive Filter Design

Chapters 19 and 20 show how to design recursive filters with the standard
frequency responses. high-pass, low-pass, band-pass, etc. What if you need
something custom? The answer is to design a recursive filter just as you would
a neural network: start with a generic set of recursion coefficients, and use
iteration to slowly mold them into what you want. This technique is important
for two reasons. First, it allows custom recursive filters to be designed without
having to hassle with the mathematics of the z-transform. Second, it shows that
the ideas from conventional DSP and neural networks can be combined to form
superb algorithms.

The main program for this method is shown in Table 26-4, with two
subroutines in Table 26-5. The array, T[ ], holds the desired frequency
response, some kind of curve that we have manually designed. Since this
program is based around the FFT, the lengths of the signals must be a power
of two. Aswritten, this program uses an FFT length of 256, as defined by the
variable, N%, in line 130. This means that T[O] to T[128] correspond to the
frequencies between 0 and 0.5 of the sampling rate. Only the magnitude is
contained in this array; the phase is not controlled in this design, and becomes
whatever it becomes.

The recursion coefficients are set to their initial values in lines 270-310,
typically selected to be the identity system. Don't use random numbers here,
or the initial filter will be unstable. The recursion coefficients are held in the
arrays, A[] and B[ ]. The variable, NP%, sets the number of poles in the
designed filter. For example, if NP% is 5, the "a" coefficients run from A[0]
to A[5], while the "b" coefficients run from B[1] to B[5].

As previously mentioned, the iterative procedure requires a single value that
describes how well the current system is functioning. This is provided by the
variable, ER (for error), and is calculated in subroutine 3000. Lines
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100'ITERATIVE DESIGN OF RECURSIVE FILTER

110

120 'INITIALIZE

130 N% = 256 'number of pointsin FFT

140 NP% =8 'number of polesin filter

150 DELTA =.00001 'perturbation increment

160 MU = .2 'iteration step size

170 DIM REX[255] 'real part of signal during FFT

180 DIM IMX[255] 'imaginary part of signal during FFT
190 DIM T[128] 'desired frequency response (mag only)
200 DIM A[8] 'the "a" recursion coefficients

210 DIM B[8] 'the "b" recursion coefficients

220 DIM SA[8] 'slope for "a" coefficients

230 DIM SBJ[8] 'slope for "b" coefficients

240"

250 GOSUB XXXX 'mythical subroutine to load T[ ]

260"

270 FOR P% =0 TO NP% 'initialize coefficients to the identity system
280 A[P%] =0

290 B[P%] =0

300 NEXT P%

310A[0] =1

320"

330" 'ITERATION LOOP

340 FOR ITER% =1 TO 100 'loop for desired number of iterations
350 GOSUB 2000 ‘calculate new coefficients

360 PRINT ITER% ENEW MU 'print current status to video screen

370 IFENEW >EOLD THEN MU =MU/2 ‘adjust the value of MU
380 NEXT ITER%

390"
400"

410 FOR P% = 0 TO NP% 'PRINT OUT THE COEFFICIENTS
420 PRINT A[P%] B[P%]
430 NEXT P%

440

450 END

TABLE 26-4

3040 to 3080 load an impulse in the array, IMX[ ]. Next, lines 3100-3150
use thisimpulse as an input signal to the recursive filter defined by the current
values of A[ ] and B[ ]. The output of this filter is thus the impulse response
of the current system, and is stored in the array, REX[ ]. The system's
frequency response is then found by taking the FFT of the impulse response, as
shown in line 3170. Subroutine 1000 isthe FFT program listed in Table 12-4
in Chapter 12. This FFT subroutine returns the frequency response in
rectangular form, overwriting the arrays REX[ ] and IMX] ].

Lines 3200-3250 then calculate ER, the mean squared error between the
magnitude of the current frequency response, and the desired frequency
response. Pay particular attention to how this error is found. The iterative
action of this program optimizes this error, making the way it is defined very
important. The FOR-NEXT loop runs through each frequency in the frequency
response. For each frequency, line 3220 calculates the magnitude of the
current frequency response from the rectangular data. In line 3230, the error
at this frequency is found by subtracting the desired magnitude, T[ ], from the
current magnitude, MAG. This error is then squared, and added to the
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accumulator variable, ER. After looping through each frequency, line 3250
completes the calculation to make ER the mean squared error of the entire
frequency response.

Lines 340 to 380 control the iteration loop of the program. Subroutine 2000
is where the changes to the recursion coefficients are made. The first action
in this subroutine is to determine the current value of ER, and store it in
another variable, EOLD (lines 2040 & 2050). After the subroutine updates
the coefficients, the value of ER is again determined, and assigned to the
variable, ENEW (lines 2270 and 2280).

The variable, MU, controls the iteration step size, just as in the previous neural
network program. An advanced feature is used in this program: an automated
adjustment to the value of MU. Thisis the reason for having the two variables,
EOLD and ENEW. When the program starts, MU is set to the relatively high
value of 0.2 (line 160). This allows the convergence to proceed rapidly, but
will limit how close the filter can come to an optimal solution. As the
iterations proceed, points will be reached where no progress is being made,
identified by ENEW being higher than EOLD. Each time this occurs, line 370
reduces the value of MU.

Subroutine 2000 updates the recursion coefficients according to the steepest
decent method: calculate the slope for each coefficient, and then change the
coefficient an amount proportional to its slope. Lines 2080-2130 calculate the
slopes for the "a" coefficients, storing them in the array, SA[ ]. Likewise, lines
2150-2200 calculate the slopes for the "b" coefficients, storing them in the
array, SB[ ]. Lines 2220-2250 then modify each of the recursion coefficients
by an amount proportional to these slopes. In this program, the proportionality
constant is simply the step size, MU. No error term is required in the
proportionality constant because there is only one example to be matched: the
desired frequency response.

The last issue is how the program calculates the slopes of the recursion
coefficients. In the neural network example, an equation for the slope was
derived. This procedure cannot be used here because it would require taking
the derivative across the DFT. Instead, a brute force method is applied:
actually change the recursion coefficient by a small increment, and then directly
calculate the new value of ER. The slope is then found as the change in ER
divided by the amount of the increment. Specifically, the current value of ER
is found in lines 2040-2050, and stored in the variable, EOLD. The loop in
lines 2080-2130 runs through each of the "a" coefficients. The first action
inside this loop is to add a small increment, DELTA, to the recursion
coefficient being worked on (line 2090). Subroutine 3000 is invoked in line
2100 to find the value of ER with the modified coefficient. Line 2110 then
calculates the slope of this coefficient as. (ER - EOLD)/DELTA. Line 2120
then restores the modified coefficient by subtracting the value of DELTA.

Figure 26-13 shows several examples of filters designed using this program.
The dotted line is the desired frequency response, while the solid line is the
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2000 'SUBROUTINE TO CALCULATE THE NEW RECURSION COEFFICIENTS
2010 'Variables entering routine: A[],B[], DELTA, MU

2020 'Variables exiting routine:
2030

2040 GOSUB 3000

2050 EOLD = ER

2060

2070

2080 FOR P% = 0 TO NP%
2090 A[P%] = A[P%] + DELTA
2100 GOSUB 3000

2110 SA[P%] = (ER-EOLD)/DELTA
2120 A[P%] = A[P%] - DELTA

2130 NEXT P%

2140

2150 FOR P% =1 TO NP%

2160 B[P%] = B[P%)] + DELTA

2170 GOSUB 3000

2180 SB[P%] = (ER-EOLD)/DELTA
2190 B[P%] = B[P%] - DELTA

2200 NEXT P%

2210

2220 FOR P% = 0 TO NP%

2230 A[P%] = A[P%)] - SA[P%] * MU
2240 B[P%] = B[P%] - SB[P%] * MU
2250 NEXT P%

2260

2270 GOSUB 3000

2280 ENEW = ER

2290

2300 RETURN

A[],B[], EOLD, ENEW

'FIND THE CURRENT ERROR
'store current error in variable, EOLD

'FIND THE ERROR SLOPES

'loop through each "a" coefficient

‘add a small increment to the coefficient
'find the error with the change
‘calculate the error slope, storein SA[ ]
'return coefficient to original value

'repeat process for each "b" coefficient

‘calculate the error slope, storein SBJ ]

'CALCULATE NEW COEFFICIENTS
'loop through each coefficient
‘adjust coefficients to move "downhill"

'FIND THE NEW ERROR
'store new error in variable, ENEW

3000 'SUBROUTINE TO CALCULATE THE FREQUENCY DOMAIN ERROR

3010 'Variables entering routine: A[1,B[]. T[]

3020 'Variables exiting routine: ER
3030

3040 FOR 1% = 0 TO N%-1

3050 REX[1%] =0

3060 IMX[1%] =0

3070 NEXT 1%

3080 IMX[12] =1

3090

3100 FOR 1% = 12 TO N%-1

3110 FOR J% =0 TO NP%

'LOAD SHIFTED IMPULSE INTO IMX][ ]

'CALCULATE IMPUL SE RESPONSE

3120 REX[1%] = REX[1%] + A[J%] * IMX[1%-J%] + B[J%] * REX[I%-J%]

3130 NEXT J%

3140 NEXT 1%

3150 IMX[12] = 0

3160

3170 GOSUB 1000

3180"

3190

3200ER =0

3210 FOR 1% = 0 TO N%/2

3220 MAG = SQR(REX[1%]"2 + IMX[1%]"2)
3230 ER=ER + ( MAG - T[1%] )2
3240 NEXT 1%

3250 ER = SQR( ER/(N%/2+1) )
3260

3270 RETURN

TABLE 26-5

'CALCULATE THE FFT
‘Table 12-4, uses REX[ ], IMX[ ], N%

'FIND FREQUENCY DOMAIN ERROR
'zero ER, to use as an accumulator

'loop through each positive frequency
'rectangular --> polar conversion
‘calculate and accumulate squared error

'finish calculation of error, ER
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FIGURE 26-13

Iterative design of recursive filters. Figure (a) shows an 8 pole low-pass filter with the error equally distributed
between 0 and 0.5. In (b), the error has been weighted to force better performance in the stopband, at the expense
of error in the passband. Figure (c) shows a 2 pole filter used for the 1/sinc(x) correction in digital-to-analog
conversion. Thefrequency responsein (d) iscompletely custom. In each figure, the desired frequency response
is shown by the dotted line, and the actual frequency response by the solid curve.

frequency response of the designed filter. Each of these filters requires several
minutes to converge on a 100 MHz Pentium. Figure (a) is an 8 pole low-pass
filter, where the error is equally weighted over the entire frequency spectrum
(the program as written). Figure (b) is the same filter, except the error in the
stopband is multiplied by eight when ER is being calculated. This forces the
filter to have less stopband ripple, at the expense of greater ripple in the
passband.

Figure (c) shows a2 polefilter for: 1/sinc(x). Asdiscussed in Chapter 3, this
can be used to counteract the zeroth-order hold during digital-to-analog
conversion (see Fig. 3-6). The error in this filter was only summed between
0 and 0.45, resulting in a better match over this range, at the expense of a
worse match between 0.45 and 0.5. Lastly, (d) is a very irregular 6 pole
frequency response that includes a sharp dip. To achieve convergence, the
recursion coefficients were initially set to those of a notch filter.
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Special Imaging Techniques

This chapter presents four specific aspects of image processing. First, ways to characterize the
spatial resolution are discussed. This describes the minimum size an object must be to be seen
in an image. Second, the signal-to-noise ratio is examined, explaining how faint an object can
be and still be detected. Third, morphological techniques are introduced. These are nonlinear
operations used to manipulate binary images (where each pixel is either black or white). Fourth,
the remarkabl e technique of computed tomography is described. This has revolutionized medical
diagnosis by providing detailed images of the interior of the human body.

Spatial Resolution

Suppose we want to compare two imaging systems, with the goal of
determining which has the best spatial resolution. In other words, we want to
know which system can detect the smallest object. To simplify things, we
would like the answer to be a single number for each system. This allows a
direct comparison upon which to base design decisions. Unfortunately, a single
parameter is not always sufficient to characterize all the subtle aspects of
imaging. This is complicated by the fact that spatial resolution is limited by
two distinct but interrelated effects: sample spacing and sampling aperture
size. This section contains two main topics: (1) how a single parameter can
best be used to characterize spatial resolution, and (2) the relationship between
sample spacing and sampling aperture size.

Figure 25-1a shows profiles from three circularly symmetric PSFs. the
pillbox, the Gaussian, and the exponential. These are representative of the
PSFs commonly found in imaging systems. As described in the last chapter,
the pillbox can result from an improperly focused lens system. Likewise,
the Gaussian is formed when random errors are combined, such as viewing
stars through a turbulent atmosphere. An exponential PSF is generated
when electrons or x-rays strike a phosphor layer and are converted into

423
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FIGURE 25-1

FWHM versusMTF. Figure (a) shows profiles of three PSFs commonly found in imaging systems: (P) pillbox,
(G) Gaussian, and (E) exponential. Each of these has a FWHM of one unit. The corresponding MTFs are
shownin (b). Unfortunately, similar values of FWHM do not correspond to similar MTF curves.

light. Thisisused in radiation detectors, night vision light amplifiers, and CRT
displays. The exact shape of these three PSFs is not important for this
discussion, only that they broadly represent the PSFs seen in real world
applications.

The PSF contains complete information about the spatial resolution. To express
the spatial resolution by a single number, we can ignore the shape of the PSF
and simply measure its width. The most common way to specify thisis by the
Full-Width-at-Half-Maximum (FWHM) value. For example, all the PSFsin
() have an FWHM of 1 unit.

Unfortunately, this method has two significant drawbacks. First, it does not
match other measures of spatial resolution, including the subjective judgement
of observers viewing the images. Second, it is usually very difficult to directly
measure the PSF. Imagine feeding an impulse into an imaging system; that is,
taking an image of a very small white dot on a black background. By
definition, the acquired image will be the PSF of the system. The problem is,
the measured PSF will only contain a few pixels, and its contrast will be low.
Unless you are very careful, random noise will swamp the measurement. For
instance, imagine that the impulse image is a 512x512 array of all zeros except
for asingle pixel having a value of 255. Now compare this to a normal image
where all of the 512x512 pixels have an average value of about 128. In loose
terms, the signal in the impulse image is about 100,000 times weaker than a
normal image. No wonder the signal-to-noise ratio will be bad; there's hardly
any signal!

A basic theme throughout this book is that signals should be understood in the
domain where the information is encoded. For instance, audio signals should
be dealt with in the frequency domain, while image signals should be handled
in the spatial domain. In spite of this, one way to measure image resolution is
by looking at the frequency response. This goes against the fundamental
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philosophy of this book; however, it is a common method and you need to
become familiar with it.

Taking the two-dimensional Fourier transform of the PSF provides the two-
dimensional frequency response. If the PSF is circularly symmetric, its
frequency response will also be circularly symmetric. In this case, complete
information about the frequency response is contained in its profile. That is,
after calculating the frequency domain via the FFT method, columns 0 to N/2
inrow 0 are all that is needed. Inimaging jargon, this display of the frequency
response is called the M odulation Transfer Function (MTF). Figure 25-1b
shows the MTFs for the three PSFs in (a). In cases where the PSF is not
circularly symmetric, the entire two-dimensional frequency response contains
information. However, it is usually sufficient to know the MTF curvesin the
vertical and horizontal directions (i.e., columns 0 to N/2 in row 0O, and rows O
to N/2 in column 0). Take note: this procedure of extracting a row or column
from the two-dimensional frequency spectrum is not equivalent to taking the
one-dimensional FFT of the profiles shown in (a). We will come back to this
issue shortly. As shown in Fig. 25-1, similar values of FWHM do not
correspond to similar MTF curves.

Figure 25-2 shows a line pair gauge, a device used to measure image
resolution viathe MTF. Line pair gauges come in different forms depending
on the particular application. For example, the black and white pattern shown
in this figure could be directly used to test video cameras. For an X-ray
imaging system, the ribs might be made from lead, with an x-ray transparent
material between. The key feature is that the black and white lines have a
closer spacing toward one end. When an image is taken of aline pair gauge,
the lines at the closely spaced end will be blurred together, while at the other
end they will be distinct. Somewhere in the middle the lines will be just barely
separable. An observer looks at the image, identifies this location, and reads
the corresponding resolution on the calibrated scale.
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The way that the ribs blur together is important in understanding the
limitations of this measurement. Imagine acquiring an image of the line
pair gauge in Fig. 25-2. Figures (a) and (b) show examples of the profiles
at low and high spatial frequencies. At the low frequency, shown in (b),
the curve is flat on the top and bottom, but the edges are blurred, At the
higher spatial frequency, (a), the amplitude of the modulation has been
reduced. This is exactly what the MTF curve in Fig. 25-1b describes:
higher spatial frequencies are reduced in amplitude. The individual ribs
will be distinguishable in the image as long as the amplitude is greater than
about 3% to 10% of the original height. Thisisrelated to the eye's ability
to distinguish the low contrast difference between the peaks and valleysin
the presence of image noise.

A strong advantage of the line pair gauge measurement is that it is simple and
fast. The strongest disadvantage is that it relies on the human eye, and
therefore has a certain subjective component. Even if the entire MTF curve is
measured, the most common way to express the system resolution is to quote
the frequency where the MTF is reduced to either 3%, 5% or 10%.
Unfortunately, you will not always be told which of these values is being used,;
product data sheets frequently use vague terms such as "limiting resolution.”
Since manufacturers like their specifications to be as good as possible
(regardless of what the device actually does), be safe and interpret these
ambiguous terms to mean 3% on the MTF curve.

A subtle point to notice is that the MTF is defined in terms of sine waves,
while the line pair gauge uses square waves. That is, the ribs are uniformly
dark regions separated by uniformly light regions. This is done for
manufacturing convenience; it is very difficult to make lines that have a
sinusoidally varying darkness. What are the consequences of using a square
wave to measure the MTF? At high spatial frequencies, all frequency
components but the fundamental of the square wave have been removed. This
causes the modulation to appear sinusoidal, such asis shown in Fig. 25-2a. At
low frequencies, such as shown in Fig. 25-2b, the wave appears square. The
fundamental sine wave contained in a square wave has an amplitude of 4/w =
1.27 times the amplitude of the square wave (see Table 13-10). The result: the
line pair gauge provides a slight overestimate of the true resolution of the
system, by starting with an effective amplitude of more than pure black to pure
white. Interesting, but almost always ignored.

Since square waves and sine waves are used interchangeably to measure the
MTF, a special terminology has arisen. Instead of the word "cycle," those in
imaging use the term line pair (adark line next to alight ling). For example,
a spatial frequency would be referred to as 25 line pairs per millimeter,
instead of 25 cycles per millimeter.

The width of the PSF doesn't track well with human perception and is
difficult to measure. The MTF methods are in the wrong domain for
understanding how resolution affects the encoded information. Is there a
more favorable alternative? The answer is yes, the line spread function
(L SF) and the edge response. As shown in Fig. 25-3, the line spread
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a. Line Spread Function (LSF) b. Edge Response

*J L Full Width at *J L* 10% to 90%
Half Maximum Edge response
(FWHM)

FIGURE 25-3

Line spread function and edge response. The line spread function (L SF) isthe derivative of the edge response.
The width of the LSF is usually expressed as the Full-Width-at-Half-Maximum (FWHM). The width of the
edge response is usually quoted by the 10% to 90% distance.

function is the response of the system to a thin line across the image.
Similarly, the edge response is how the system responds to a sharp straight
discontinuity (an edge). Since alineisthe derivative (or first difference) of an
edge, the LSF is the derivative (or first difference) of the edge response. The
single parameter measurement used here is the distance required for the edge
response to rise from 10% to 90%.

There are many advantages to using the edge response for measuring resolution.
First, the measurement is in the same form as the image information is encoded.
In fact, the main reason for wanting to know the resolution of a system is to
understand how the edges in an image are blurred. The second advantage is
that the edge response is simple to measure because edges are easy to generate
inimages. If needed, the LSF can easily be found by taking the first difference
of the edge response.

The third advantage is that all common edges responses have a similar shape,
even though they may originate from drastically different PSFs. Thisis shown
in Fig. 25-4a, where the edge responses of the pillbox, Gaussian, and
exponential PSFs are displayed. Since the shapes are similar, the 10%-90%
distance is an excellent single parameter measure of resolution. The fourth
advantage is that the MTF can be directly found by taking the one-dimensional
FFT of the LSF (unlike the PSF to MTF calculation that must use a two-
dimensional Fourier transform). Figure 25-4b shows the MTFs corresponding
to the edge responses of (a). In other words, the curves in (a) are converted
into the curves in (b) by taking the first difference (to find the LSF), and then
taking the FFT.
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Edge response and MTF. Figure (a) shows the edge responses of three PSFs: (P) pillbox, (G) Gaussian, and
(E) exponential. Each edge response has a 10% to 90% rise distance of 1 unit. Figure (b) shows the
corresponding MTF curves, which are similar above the 10% level. Limiting resolution is a vague term
indicating the frequency where the MTF has an amplitude of 3% to 10%.

The fifth advantage is that similar edge responses have similar MTF curves, as
shown in Figs. 25-4 (a) and (b). This allows us to easily convert between the
two measurements. In particular, a system that has a 10%-90% edge response
of x distance, has a limiting resolution (10% contrast) of about 1 line pair per
x distance. The units of the "distance" will depend on the type of system being
dealt with. For example, consider three different imaging systems that have
10%-90% edge responses of 0.05 mm, 0.2 milliradian and 3.3 pixels. The
10% contrast level on the corresponding MTF curves will occur at about: 20
Ip/mm, 5 Ip/milliradian and 0.33 Ip/pixel, respectively.

Figure 25-5 illustrates the mathematical relationship between the PSF and the
LSF. Figure (a) shows a pillbox PSF, a circular area of value 1, displayed as
white, surrounded by a region of all zeros, displayed as gray. A profile of the
PSF (i.e., the pixel values along a line drawn across the center of the image)
will be a rectangular pulse. Figure (b) shows the corresponding LSF. As
shown, the LSF is mathematically equal to the integrated profile of the PSF.
Thisisfound by sweeping across the image in some direction, as illustrated by
the rays (arrows). Each value in the integrated profile is the sum of the pixel
values along the corresponding ray.

In this example where the rays are vertical, each point in the integrated profile
is found by adding all the pixel valuesin each column. This corresponds to the
LSF of aline that is vertical in theimage. The LSF of aline that is horizontal
in the image is found by summing all of the pixel values in each row. For
continuous images these concepts are the same, but the summations are
replaced by integrals.

As shown in this example, the LSF can be directly calculated from the PSF.
However, the PSF cannot always be calculated from the LSF. Thisis because
the PSF contains information about the spatial resolution in all directions,
while the LSF is limited to only one specific direction. A system
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FIGURE 25-5 a. Point Spread Function
Relationship betweenthe PSFand LSF. A
pillbox PSF is shownin (a). Any row or
column through the white center will bea
rectangular pulse. Figure (b) shows the
corresponding LSF, equivalent to an
integrated profile of the PSF. That is, the
LSF is found by sweeping across the
image in some direction and adding
(integrating) the pixel values along each
ray. Inthe direction shown, this is done

by adding all the pixelsin each column. b. "Integrated" profile of
the PSF (the LSF)

has only one PSF, but an infinite number of LSFs, one for each angle. For
example, imagine a system that has an oblong PSF. This makes the spatial
resolution different in the vertical and horizontal directions, resulting in the
LSF being different in these directions. Measuring the LSF at a single
angle does not provide enough information to calculate the complete PSF
except in the special instance where the PSF is circularly symmetric.
Multiple L SF measurements at various angles make it possible to calculate
a non-circular PSF; however, the mathematics is quite involved and usually
not worth the effort. In fact, the problem of calculating the PSF from a
number of LSF measurements is exactly the same problem faced in
computed tomography, discussed later in this chapter.

As a practical matter, the LSF and the PSF are not dramatically different for
most imaging systems, and it is very common to see one used as an
approximation for the other. This is even more justifiable considering that
there are two common cases where they are identical: the rectangular PSF has
a rectangular LSF (with the same widths), and the Gaussian PSF has a
Gaussian LSF (with the same standard deviations).

These concepts can be summarized into two skills: how to evaluate a
resolution specification presented to you, and how to measure a resolution
specification of your own. Suppose you come across an advertisement
stating: "This system will resolve 40 line pairs per millimeter." You
should interpret this to mean: "A sinusoid of 40 Ip/mm will have its
amplitude reduced to 3%-10% of its true value, and will be just barely
visible in the image." You should also do the mental calculation that 40
Ip/mm @ 10% contrast is equal to a 10%-90% edge response of 1/(40
Ip/mm) = 0.025 mm. If the MTF specification is for a 3% contrast level,
the edge response will be about 1.5 to 2 times wider.

When you measure the spatial resolution of an imaging system, the steps are
carried out in reverse. Place a sharp edge in the image, and measure the
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resulting edge response. The 10%-90% distance of this curve is the best single
parameter measurement of the system's resolution. To keep your boss and the
marketing people happy, take the first difference of the edge response to find
the LSF, and then use the FFT to find the MTF.

Sample Spacing and Sampling Aperture

Figure 25-6 shows two extreme examples of sampling, which we will cal a
perfect detector and a blurry detector. Imagine (a) being the surface of
an imaging detector, such asa CCD. Light striking anywhere inside one of the
square pixels will contribute only to that pixel value, and no others. Thisis
shown in the figure by the black sampling aperture exactly filling one of the
square pixels. Thisis an optimal situation for an image detector, because all
of the light is detected, and there is no overlap or crosstalk between adjacent
pixels. In other words, the sampling aperture is exactly equal to the sample

spacing.

The alternative example is portrayed in (e). The sampling aperture is
considerably larger than the sample spacing, and it follows a Gaussian
distribution. In other words, each pixel in the detector receives a contribution
from light striking the detector in a region around the pixel. This should sound
familiar, because it is the output side viewpoint of convolution. From the
corresponding input side viewpoint, a narrow beam of light striking the detector
would contribute to the value of several neighboring pixels, also according to
the Gaussian distribution.

Now turn your attention to the edge responses of the two examples. The
markers in each graph indicate the actual pixel values you would find in an
image, while the connecting lines show the underlying curve that is being
sampled. An important concept is that the shape of this underlying curve is
determined only by the sampling aperture. This means that the resolution in
the final image can be limited in two ways. First, the underlying curve may
have poor resolution, resulting from the sampling aperture being too large.
Second, the sample spacing may be too large, resulting in small details being
lost between the samples. Two edge response curves are presented for each
example, illustrating that the actual samples can fall anywhere along the
underlying curve. In other words, the edge being imaged may be sitting exactly
upon a pixel, or be straddling two pixels. Notice that the perfect detector has
zero or one sample on the rising part of the edge. Likewise, the blurry detector
has three to four samples on the rising part of the edge.

What is limiting the resolution in these two systems? The answer is
provided by the sampling theorem. As discussed in Chapter 3, sampling
captures all frequency components below one-half of the sampling rate,
while higher frequencies are lost due to aliasing. Now look at the MTF
curve in (h). The sampling aperture of the blurry detector has removed all
frequencies greater than one-half the sampling rate; therefore, nothing is
lost during sampling. This means that the resolution of this system is
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Example 1: Perfect detector
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Example 2: Blurry detector
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completely limited by the sampling aperture, and not the sample spacing. Put
another way, the sampling aperture has acted as an antialias filter, allowing
lossless sampling to take place.

In comparison, the MTF curve in (d) shows that both processes are limiting the
resolution of this system. The high-frequency fall-off of the MTF curve
represents information lost due to the sampling aperture. Since the MTF
curve has not dropped to zero before a frequency of 0.5, there is also
information lost during sampling, aresult of the finite sample spacing. Which
is limiting the resolution more? It is difficult to answer this question with a
number, since they degrade the image in different ways. Suffice it to say that
the resolution in the perfect detector (example 1) is mostly limited by the
sampl e spacing.

While these concepts may seem difficult, they reduce to avery simple rule for
practical usage. Consider a system with some 10%-90% edge response
distance, for example 1 mm. If the sample spacing is greater than 1 mm (there
is less than one sample along the edge), the system will be limited by the
sample spacing. If the sample spacing is less than 0.33 mm (there are more
than 3 samples along the edge), the resolution will be limited by the sampling
aperture. When a system has 1-3 samples per edge, it will be limited by both
factors.

Signal-to-Noise Ratio

An object is visible in an image because it has a different brightness than its
surroundings. That is, the contrast of the object (i.e., the signal) must
overcome the image noise. This can be broken into two classes: limitations of
the eye, and limitations of the data.

Figure 25-7 illustrates an experiment to measure the eye's ability to detect
weak signals. Depending on the observation conditions, the human eye can
detect a minimum contrast of 0.5% to 5%. In other words, humans can
distinguish about 20 to 200 shades of gray between the blackest black and the
whitest white. The exact number depends on a variety of factors, such

Contrast

40% 30% 20% 10% 8% 5% 3% 1%

FIGURE 25-7
Contrast detection. The human eye can detect aminimum contrast of about 0.5 to 5%, depending on the
observation conditions. 100% contrast is the difference between pure black and pure white.
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Minimum detectable SNR. An objectisvisiblein animageonly if its contrast is |arge enough to overcome the
random image noise. In this example, the three squares have SNRs of 2.0, 1.0 and 0.5 (where the SNR is
defined as the contrast of the object divided by the standard deviation of the noise).

as the brightness of the ambient lightning, the distance between the two regions
being compared, and how the grayscale image is formed (video monitor,
photograph, halftone, etc.).

The grayscale transform of Chapter 23 can be used to boost the contrast of a
selected range of pixel values, providing a valuable tool in overcoming the
limitations of the human eye. The contrast at one brightness level is increased,
at the cost of reducing the contrast at another brightness level. However, this
only works when the contrast of the object is not lost in random image noise.
This is amore serious situation; the signal does not contain enough information
to reveal the object, regardless of the performance of the eye.

Figure 25-8 shows an image with three squares having contrasts of 5%, 10%,
and 20%. The background contains normally distributed random noise with a
standard deviation of about 10% contrast. The SNR is defined as the contrast
divided by the standard deviation of the noise, resulting in the three squares
having SNRs of 0.5, 1.0 and 2.0. In general, trouble begins when the SNR
falls below about 1.0.
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The exact value for the minimum detectable SNR depends on the size of the
object; the larger the object, the easier it is to detect. To understand this,
imagine smoothing the image in Fig. 25-8 with a 3x3 square filter kernel. This
leaves the contrast the same, but reduces the noise by a factor of three (i.e., the
square root of the number of pixelsin the kernel). Since the SNR is tripled,
lower contrast objects can be seen. To see fainter objects, the filter kernel can
be made even larger. For example, a 5x5 kernel improves the SNR by a factor
of /25 = 5. This strategy can be continued until the filter kernel is equal to the
size of the object being detected. This means the ability to detect an object is
proportional to the square-root of itsarea. If an object's diameter is doubled,
it can be detected in twice as much noise.

Visual processing in the brain behaves in much the same way, smoothing the
viewed image with various size filter kernels in an attempt to recognize low
contrast objects. The three profiles in Fig. 25-8 illustrate just how good
humans are at detecting objects in noisy environments. Even though the objects
can hardly be identified in the profiles, they are obvious in the image. To
really appreciate the capabilities of the human visual system, try writing
algorithms that operate in this low SNR environment. You'll be humbled by
what your brain can do, but your code can't!

Random image noise comes in two common forms. The first type, shown in
Fig. 25-9a, has a constant amplitude. In other words, dark and light regionsin
the image are equally noisy. In comparison, (b) illustrates noise that increases
with the signal level, resulting in the bright areas being more noisy than the
dark ones. Both sources of noise are present in most images, but one or the
other is usually dominant. For example, it is common for the noise to decrease
as the signal level is decreased, until a plateau of constant amplitude noise is
reached.

A common source of constant amplitude noise is the video preamplifier. All
analog electronic circuits produce noise. However, it does the most harm
where the signal being amplified is at its smallest, right at the CCD or other
imaging sensor. Preamplifier noise originates from the random motion of
electrons in the transistors. This makes the noise level depend on how the
electronics are designed, but not on the level of the signal being amplified. For
example, atypical CCD camera will have an SNR of about 300 to 1000 (40
to 60 dB), defined as the full scale signal level divided by the standard
deviation of the constant amplitude noise.

Noise that increases with the signal level results when the image has been
represented by a small number of individual particles. For example, this
might be the x-rays passing through a patient, the light photons entering a
camera, or the electrons in the well of a CCD. The mathematics governing
these variations are called counting statistics or Poisson statistics.
Suppose that the face of a CCD is uniformly illuminated such that an average
of 10,000 electrons are generated in each well. By sheer chance, some wells
will have more electrons, while some will have less. To be more exact, the
number of electrons will be normally distributed with a mean of 10,000, with
some standard deviation that describes how much variation there is from
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Image noise. Random noise in imagestakestwo general forms. In (@), the amplitude of the noise remains constant
asthe signal level changes. Thisistypical of electronic noise. In (b), the amplitude of the noise increases asthe
square-root of thesignal level. Thistype of noise originates from the detection of asmall number of particles, such

as light photons, electrons, or x-rays.

well-to-well. A key feature of Poisson statistics is that the standard deviation
is equal to the square-root of the number of individual particles. That is, if
there are N particles in each pixel, the mean is equal to N and the standard
deviation is equal to y/N. This makes the signal-to-noise ratio equal to NA/N,

or simply, y/N. In equation form:

EQUATION 25-1

Poisson statistics. In a Poisson distributed
signal, the mean, |, isthe average number
of individual particles, N. The standard
deviation, o, is equal to the square-root of
the average number of individual particles.
The signal-to-noiseratio (SNR) isthe mean
divided by the standard deviation.

In the CCD example, the standard deviation is /10,000 =

M =N
o= yN
\R = N

100. Likewise the

signal-to-noise ratio is also /10,000 = 100. If the average number of electrons
per well is increased to one million, both the standard deviation and the SNR
increase to 1,000. That is, the noise becomes larger as the signal becomes
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larger, as shown in Fig. 25-9b. However, the signal is becoming larger
faster than the noise, resulting in an overall improvement in the SNR.
Don't be confused into thinking that a lower signal will provide less noise
and therefore better information. Remember, your goal is not to reduce the
noise, but to extract a signal from the noise. This makes the SNR the key
parameter.

Many imaging systems operate by converting one particle type to another. For
example, consider what happens in a medical x-ray imaging system. Within an
X-ray tube, electrons strike a metal target, producing x-rays. After passing
through the patient, the x-rays strike a vacuum tube detector known as an
image intensifier. Here the x-rays are subsequently converted into light
photons, then electrons, and then back to light photons. These light photons
enter the camera where they are converted into electrons in the well of a CCD.
In each of these intermediate forms, the image is represented by a finite number
of particles, resulting in added noise as dictated by Eg. 25-1. Thefinal SNR
reflects the combined noise of all stages; however, one stage is usually
dominant. This is the stage with the worst SNR because it has the fewest
particles. This limiting stage is called the quantum sink.

In night vision systems, the quantum sink is the number of light photons that
can be captured by the camera. The darker the night, the noisier the final
image. Medical x-ray imaging is a similar example; the quantum sink is the
number of x-rays striking the detector. Higher radiation levels provide less
noisy images at the expense of more radiation to the patient.

When is the noise from Poisson statistics the primary noise in an image? It is
dominant whenever the noise resulting from the quantum sink is greater than
the other sources of noise in the system, such as from the electronics. For
example, consider a typical CCD camera with an SNR of 300. That is, the
noise from the CCD preamplifier is 1/300th of the full scale signal. An
equivalent noise would be produced if the quantum sink of the system contains
90,000 particles per pixel. If the quantum sink has a smaller number of
particles, Poisson noise will dominate the system. If the quantum sink has a
larger number of particles, the preamplifier noise will be predominant.
Accordingly, most CCD's are designed with a full well capacity of 100,000 to
1,000,000 electrons, minimizing the Poisson noise.

Morphological Image Processing

The identification of objects within an image can be a very difficult task.
One way to simplify the problem is to change the grayscale image into a
binary image, in which each pixel is restricted to a value of either 0 or 1.
The techniques used on these binary images go by such names as: blob
analysis, connectivity analysis, and morphological image processing
(from the Greek word morphe, meaning shape or form). The foundation of
morphological processing is in the mathematically rigorous field of set
theory; however, this level of sophistication is seldom needed. Most
morphological algorithms are simple logic operations and very ad hoc. In
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a. Origina b. Erosion c. Dilation

FIGURE 25-10

Morphological operations. Four basic
morphological operationsareused in the
processing of binary images: erosion,
dilation, opening, and closing. Figure (a)
shows an exampl e binary image. Figures
(b) to (e) show the result of applying
these operations to theimagein (a).

d. Opening e. Closing

other words, each application requires a custom solution developed by trial-
and-error. This is usually more of an art than a science. A bag of tricks is
used rather than standard algorithms and formal mathematical properties. Here
are some examples.

Figure 25-10a shows an example binary image. This might represent an enemy
tank in an infrared image, an asteroid in a space photograph, or a suspected
tumor in amedical x-ray. Each pixel in the background is displayed as white,
while each pixel in the object is displayed as black. Frequently, binary images
are formed by thresholding a grayscale image; pixels with a value greater than
athreshold are set to 1, while pixels with a value below the threshold are set
to 0. It is common for the grayscale image to be processed with linear
techniques before the thresholding. For instance, illumination flattening
(described in Chapter 24) can often improve the quality of the initial binary
image.

Figures (b) and (c) show how the image is changed by the two most common
morphological operations, er osion and dilation. In erosion, every object pixel
that is touching a background pixel is changed into a background pixel. In
dilation, every background pixel that is touching an object pixel is changed into
an object pixel. Erosion makes the objects smaller, and can break a single
object into multiple objects. Dilation makes the objects larger, and can merge
multiple objects into one.

As shown in (d), opening is defined as an erosion followed by a dilation.
Figure (e) shows the opposite operation of closing, defined as a dilation
followed by an erosion. As illustrated by these examples, opening removes
small islands and thin filaments of object pixels. Likewise, closing removes
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islands and thin filaments of background pixels. These techniques are useful
for handling noisy images where some pixels have the wrong binary value. For
instance, it might be known that an object cannot contain a "hole", or that the
object's border must be smooth.

Figure 25-11 shows an example of morphological processing. Figure (a) isthe
binary image of a fingerprint. Algorithms have been developed to analyze
these patterns, allowing individual fingerprints to be matched with those in a
database. A common step in these algorithms is shown in (b), an operation
called skeletonization. This simplifies the image by removing redundant
pixels; that is, changing appropriate pixels from black to white. This results
in each ridge being turned into a line only a single pixel wide.

Tables 25-1 and 25-2 show the skeletonization program. Even though the
fingerprint image is binary, it is held in an array where each pixel can run from
0to 255. A black pixel is denoted by 0, while a white pixel is denoted by 255.
As shown in Table 25-1, the algorithm is composed of 6 iterations that
gradually erode the ridges into athin line. The number of iterations is chosen
by trial and error. An aternative would be to stop when an iteration makes no
changes.

During an iteration, each pixel in the image is evaluated for being removable;
the pixel meets a set of criteria for being changed from black to white. Lines
200-240 loop through each pixel in the image, while the subroutine in Table
25-2 makes the evaluation. |f the pixel under consideration is not removable,
the subroutine does nothing. If the pixel is removable, the subroutine changes its
value from 0 to 1. This indicates that the pixd is still black, but will be changed
to white at the end of the iteration. After all the pixels have been evaluated,
lines 260-300 change the value of the marked pixes from 1 to 255. This two-stage
process results in the thick ridges being eroded equally from all directions,
rather than a pattern based on how the rows and columns are scanned.

a. Original fingerprint b. Skeletonized fingerprint

-

l
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P

FIGURE 25-11
Binary skeletonization. The binary image of afingerprint, (a), containsridgesthat are many pixels
wide. The skeletonized version, (b), contains ridges only a single pixel wide.
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100 'SKELETONIZATION PROGRAM
110 'Object pixels have a value of 0 (displayed as black)
120 'Background pixels have a value of 255 (displayed as white)

130

140 DIM X%[149,149] 'X%[ , ] holds the image being processed
150

160 GOSUB X XXX 'Mythical subroutine to load X% , ]

170

180 FORITER% =0TO5 'Run through six iteration loops

190

200 FORR%=1TO 148 'Loop through each pixel in the image.

210 FORC%=1TO 148 'Subroutine 5000 (Table 25-2) indicates which
220 GOSUB 5000 'pixels can be changed from black to white,
230 NEXT C% 'by marking the pixels with avalue of 1.
240 NEXT R%

250"

260 FORR% =0TO 149 'Loop through each pixel in the image changing
270 FORC%=0TO 149 'the marked pixels from black to white.
280 IF X%(R%,C%) = 1 THEN X%(R%,C%) = 255

290 NEXT C%

300 NEXT R%

310"

320 NEXT ITER%

330"

340 END

439

TABLE 25-1

The decision to remove a pixel is based on four rules, as contained in the
subroutine shown in Table 25-2. All of these rules must be satisfied for a pixel
to be changed from black to white. The first three rules are rather simple,
while the fourth is quite complicated. As shown in Fig. 25-12a, a pixel at
location [R,C] has eight neighbors. The four neighbors in the horizontal and
vertical directions (labeled 2,4,6,8) are frequently called the close neighbors.
The diagonal pixels (labeled 1,3,5,7) are correspondingly called the distant
neighbors. The four rules are as follows:

Rule one: The pixel under consideration must presently be black. If the pixel
is already white, no action needs to be taken.

Rule two: At least one of the pixel's close neighbors must be white. This
insures that the erosion of the thick ridges takes place from the outside. In
other words, if a pixel is black, and it is completely surrounded by black pixels,
it is to be left alone on this iteration. Why use only the close neighbors,
rather than all of the neighbors? The answer is simple: running the algorithm
both ways shows that it works better. Remember, this is very common in
morphological image processing; trial and error is used to find if one technique
performs better than another.

Rule three: The pixel must have more than one black neighbor. If it has only
one, it must be the end of aline, and therefore shouldn't be removed.

Rule four: A pixel cannot be removed if it results in its neighbors being
disconnected. This is so each ridge is changed into a continuous line, not a
group of interrupted segments. As shown by the examples in Fig. 25-12,
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a. Pixel numbering

Column
c-1 C c+l FIGURE 25-12 _
Neighboring pixels. A pixel at row and column
R 1123 [R,C] has eight neighbors, referred to by the
n‘%: r | s 4 numbers in (a). Figures (b) and (c) show

examples where the neighboring pixels are
Rt1| 7 16| 5 connected and unconnected, respectively. This
definition is used by rule number four of the
skeletonization algorithm.

b. Connected neighbors

Column Column Column
C-1 C C+1 C-14C C+1 C-1 C C+1
Ril - Ril Ril
= * = =
o] o R o R
o R o o "
R+1 R+1 R+1

c. Unconnected neighbors

Column Column Column
C-l14C CH1 - C C+1 C-1,C C+l

R-1 R-1
R R
R+1 R+l R+l

connected means that all of the black neighbors touch each other. Likewise,
unconnected means that the black neighbors form two or more groups.

Row
Pl
Row
Row

The algorithm for determining if the neighbors are connected or unconnected
is based on counting the black-to-white transitions between adjacent
neighboring pixels, in a clockwise direction. For example, if pixel 1 is black
and pixel 2 iswhite, it is considered a black-to-white transition. Likewise, if
pixel 2 is black and both pixel 3 and 4 are white, thisis also a black-to-white
transition. In total, there are eight locations where a black-to-white transition
may occur. To illustrate this definition further, the examplesin (b) and (c)
have an asterisk placed by each black-to-white transition. The key to this
algorithm is that there will be exactly one black-to-white transition if the
neighbors are connected. More than one such transition indicates that the
neighbors are unconnected.

As additional examples of binary image processing, consider the types of
algorithms that might be useful after the fingerprint is skeletonized. A
disadvantage of this particular skeletonization algorithm is that it leaves a
considerable amount of fuzz, short offshoots that stick out from the sides of
longer segments. There are several different approaches for eliminating
these artifacts. For example, a program might loop through the image
removing the pixel at the end of every line. These pixels are identified
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5000 ' Subroutine to determine if the pixel at X%[R%,C%)] can be removed.

5010 If al four of the rules are satisfied, then X%(R%,C%], is set to avalue of 1,

5020 ' indicating it should be removed at the end of the iteration.

5030

5040 'RULE #1: Do nothing if the pixel already white

5050 IF X%(R%,C%) = 255 THEN RETURN

5060

5070

5080 'RULE #2: Do nothing if all of the close neighbors are black

5090 IF X%[R% -1,C% ] <> 255 AND X%[R% ,C%+1] <> 255 AND
X%[R%+1,C% ] <> 255 AND X%[R% ,C% -1] <> 255 THEN RETURN

5100

5110

5120 'RULE #3: Do nothing if only a single neighbor pixel is black

5130 COUNT% =0

5140 IF X%[R% -1,C% -1] =0THEN COUNT% = COUNT% + 1

5150 IF X%[R% -1,C% ] =0THEN COUNT% = COUNT% + 1

5160 IF X%[R% -1,C%+1] = 0 THEN COUNT% = COUNT% + 1

5170 IF X%[R% ,C%+1] = 0 THEN COUNT% = COUNT% + 1

5180 IF X%[R%+1,C%+1] = 0 THEN COUNT% = COUNT% + 1

5190 IF X%[R%+1,C% | =0THEN COUNT% = COUNT% + 1
5200 IF X%[R%+1,C% -1] =0THEN COUNT% = COUNT% + 1
5210 IF X%[R% ,C% -1] =0 THEN COUNT% = COUNT% + 1
5220 IF COUNT% = 1 THEN RETURN

5230

5240

5250 'RULE 4: Do nothing if the neighbors are unconnected.
5260 'Determine this by counting the black-to-white transitions
5270 'while moving clockwise through the 8 neighboring pixels.
5280 COUNT% =0

5290 |F X%[R% -1,C% -1] =0 AND X%[R% -1,C% ] >0 THEN COUNT% = COUNT% + 1
5300 IF X%[R% -1,C% ] =0 AND X%[R% -1,C%+1] >0 AND X%[R% ,C%+1] >0

THEN COUNT% = COUNT% + 1
5310 IF X%[R% -1,C%+1]  =0AND X%[R% ,C%+1] >0 THEN COUNT% = COUNT% + 1
5320 IF X%[R% ,C%+1]  =O0AND X%[R%+1,C%+1] >0 AND X%[R%+1,C% ] >0

THEN COUNT% = COUNT% + 1
5330 IF X%[R%+1,C%+1] = O0AND X%[R%+1,C% ] >0 THEN COUNT% = COUNT% + 1
5340 IF X%[R%+1,C% ]  =O0AND X%[R%+1,C%-1] >0 AND X%[R% ,C%-1] >0

THEN COUNT% = COUNT% + 1
5350 IF X%[R%+1,C%-1]  =0AND X%[R% ,C%-1] >0 THEN COUNT% = COUNT% + 1
5360 IF X%[R% ,C%-1] =O0AND X%[R%-1,C%-1] >0 AND X%[R%-1,C% ] >0

THEN COUNT% = COUNT% + 1
5370 IF COUNT% > 1 THEN RETURN
5380
5390

5400 'If all rules are satisfied, mark the pixel to be set to white at the end of the iteration

5410 X%(R%,C%) = 1
5420
5430 RETURN
TABLE 25-2
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by having only one black neighbor. Do this several times and the fuzz is
removed at the expense of making each of the correct lines shorter. A better
method would loop through the image identifying branch pixels (pixels that
have more than two neighbors). Starting with each branch pixel, count the
number of pixelsin each offshoot. If the number of pixelsin an offshoot is less
than some value (say, 5), declare it to be fuzz, and change the pixels in the

branch from black to white.
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Another algorithm might change the data from a bitmap to a vector mapped
format. Thisinvolves creating alist of the ridges contained in the image and
the pixels contained in each ridge. In the vector mapped form, each ridge in
the fingerprint has an individual identity, as opposed to an image composed of
many unrelated pixels. This can be accomplished by looping through the image
looking for the endpoints of each line, the pixels that have only one black
neighbor. Starting from the endpoint, each line is traced from pixel to
connecting pixel. After the opposite end of the line is reached, all the traced
pixels are declared to be a single object, and treated accordingly in future
algorithms.

Computed Tomography

A basic problem in imaging with x-rays (or other penetrating radiation) is
that a two-dimensional image is obtained of a three-dimensional object.
This means that structures can overlap in the final image, even though they
are completely separate in the object. This is particularly troublesome in
medical diagnosis where there are many anatomic structures that can
interfere with what the physician is trying to see. During the 1930's, this
problem was attacked by moving the x-ray source and detector in a
coordinated motion during image formation. From the geometry of this
motion, a single plane within the patient remains in focus, while structures
outside this plane become blurred. This is analogous to a camera being
focused on an object at 5 feet, while objects at a distance of 1 and 50 feet
are blurry. These related techniques based on motion blurring are now
collectively called classical tomography. The word tomography means "a
picture of a plane."

In spite of being well developed for more than 50 years, classical tomography
israrely used. Thisis because it has a significant limitation: the interfering
objects are not removed from the image, only blurred. The resulting image
quality is usually too poor to be of practical use. The long sought solution was
a system that could create an image representing a 2D slice through a 3D
object with no interference from other structures in the 3D object.

This problem was solved in the early 1970s with the introduction of a
technique called computed tomography (CT). CT revolutionized the
medical x-ray field with its unprecedented ability to visualize the anatomic
structure of the body. Figure 25-13 shows a typical medical CT image.
Computed tomography was originally introduced to the marketplace under
the names Computed Axial Tomography and CAT scanner. These terms are
now frowned upon in the medical field, although you hear them used
frequently by the general public.

Figure 25-14 illustrates a simple geometry for acquiring a CT slice through
the center of the head. A narrow pencil beam of x-rays is passed from the
X-ray source to the x-ray detector. This means that the measured value at
the detector is related to the total amount of material placed anywhere



FIGURE 25-13

Computed tomography image. ThisCT dliceis
of a human abdomen, at the level of the navel.
Many organs are visible, such asthe (L) Liver,
(K) Kidney, (A) Aorta, (S) Spine, and (C) Cyst
covering the right kidney. CT can visualize
internal anatomy far better than conventional

medical x-rays.

FIGURE 25-14

CT data acquisition. A simple CT system
passes a narrow beam of x-rays through the
body from source to detector. The source
and detector are then translated to obtain a
complete view. The remaining views are
obtained by rotating the source and detector
in about 1° increments, and repeating the

translation process.
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along the beam's path. Materials such as bone and teeth block more of the x-
rays, resulting in a lower signal compared to soft tissue and fat. Asshown in
the illustration, the source and detector assemblies are translated to acquire a
view (CT jargon) at this particular angle. While this figure shows only a
single view being acquired, a complete CT scan requires 300 to 1000 views
taken at rotational increments of about 0.3° to 1.0°. Thisis accomplished by
mounting the x-ray source and detector on a rotating gantry that surrounds the
patient. A key feature of CT data acquisition is that x-rays pass only through
the glice of the body being examined. Thisis unlike classical tomography
where x-rays are passing through structures that you try to suppress in the fina
image. Computed tomography doesn't allow information from irrelevant
locations to even enter the acquired data.

radiation
detector

radiation
source
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Several preprocessing steps are usually needed before the image reconstruction
can take place. For instance, the logarithm must be taken of each x-ray
measurement. This is because x-rays decrease in intensity exponentially as
they pass through material. Taking the logarithm provides a signal that is
linearly related to the characteristics of the material being measured. Other
preprocessing steps are used to compensate for the use of polychromatic (more
than one energy) x-rays, and multielement detectors (as opposed to the single
element shown in Fig. 25-14). While these are a key step in the overall
technique, they are not related to the reconstruction algorithms and we won't
discuss them further.

Figure 25-15 illustrates the relationship between the measured views and the
corresponding image. Each sample acquired in a CT system is equal to the sum
of the image values along a ray pointing to that sample. For example, view 1
is found by adding all the pixels in each row. Likewise, view 3 is found by
adding all the pixelsin each column. The other views, such as view 2, sum the
pixels along rays that are at an angle.

There are four main approaches to calculating the slice image given the set of
itsviews. Thesearecaled CT reconstruction algorithms. The first method
is totally impractical, but provides a better understanding of the problem. Itis
based on solving many simultaneous linear equations. One equation can be
written for each measurement. That is, a particular sample in a particular
profile is the sum of a particular group of pixelsin theimage. To calculate N2
unknown variables (i.e., the image pixel values), there must be N2
independent equations, and therefore N? measurements. Most CT scanners
acquire about 50% more samples than rigidly required by this analysis. For
example, to reconstruct a 512x512 image, a system might take 700 views with
600 samples in each view. By making the problem overdetermined in this
manner, the final image has reduced noise and artifacts. The problem with this
first method of CT reconstruction is computation time. Solving several hundred
thousand simultaneous linear equations is an daunting task.

The second method of CT reconstruction uses iter ative technigques to calculate
the final image in small steps. There are several variations of this method: the
Algebraic Reconstruction Technique (ART), Simultaneous Iterative
Reconstruction Technique (SIRT), and lterative Least Squares Technique
(ILST). The difference between these methods is how the successive
corrections are made: ray-by-ray, pixel-by-pixel, or simultaneously correcting
the entire data set, respectively. As an example of these techniques, we will
look at ART.

To start the ART algorithm, all the pixels in the image array are set to some
arbitrary value. An iterative procedure is then used to gradually change
the image array to correspond to the profiles. An iteration cycle consists
of looping through each of the measured data points. For each measured
value, the following question is asked: how can the pixel values in the
array be changed to make them consistent with this particular
measurement? In other words, the measured sample is compared with the
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FIGURE 25-15

CT views. Computed tomography acquires a set of views and then reconstructs the corresponding
image. Each sampleinaview isequal to the sum of theimage values along the ray that pointsto that
sample. Inthisexample, theimageisasmall pillbox surrounded by zeros. While only three views
are shown here, atypical CT scan uses hundreds of views at slightly different angles.

sum of the image pixels along the ray pointing to the sample. If the ray sum
is lower than the measured sample, all the pixels along the ray are increased
in value. Likewise, if the ray sum is higher than the measured sample, all of
the pixel values along the ray are decreased. After the first complete iteration
cycle, there will still be an error between the ray sums and the measured
values. Thisis because the changes made for any one measurement disrupts all
the previous corrections made. The idea is that the errors become smaller with
repeated iterations until the image converges to the proper solution.

Iterative techniques are generally slow, but they are useful when better
algorithms are not available. In fact, ART was used in the first commercial
medical CT scanner released in 1972, the EMI Mark I. We will revisit
iterative technigues in the next chapter on neural networks. Development of
the third and forth methods have almost entirely replaced iterative techniques
in commercia CT products.

The last two reconstruction algorithms are based on formal mathematical
solutions to the problem. These are elegant examples of DSP. The third
method is called filtered backprojection. It is a modification of an older
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a. Using 3 views b. Using many views

FIGURE 25-16
Backprojection. Backprojection reconstructs an image by taking each view and smearing it along
the path it was originally acquired. The resulting image isablurry version of the correct image.

technique, called backprojection or simple backprojection. Figure 25-16
shows that simple backprojection is a common sense approach, but very
unsophisticated.  An individual sample is backprojected by setting all the
image pixels along the ray pointing to the sample to the same value. In less
technical terms, a backprojection is formed by smearing each view back
through the image in the direction it was originally acquired. The final
backprojected image is then taken as the sum of all the backprojected views.

While backprojection is conceptually simple, it does not correctly solve the
problem. As shown in (b), a backprojected image is very blurry. A single
point in the true image is reconstructed as a circular region that decreases in
intensity away from the center. In more formal terms, the point spread
function of backprojection is circularly symmetric, and decreases as the
reciprocal of its radius.

Filtered backprojection is a technique to correct the blurring encountered in
simple backprojection. As illustrated in Fig. 25-17, each view is filtered
before the backprojection to counteract the blurring PSF. That is, each of the
one-dimensional views is convolved with a one-dimensional filter kernel to
create a set of filtered views. These filtered views are then backprojected to
provide the reconstructed image, a close approximation to the "correct” image.
In fact, the image produced by filtered backprojection is identical
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FIGURE 25-17

Filtered backprojection. Filtered backprojection reconstructs an image by filtering each view before
backprojection. This removes the blurring seen in simple backprojection, and results in a
mathematically exact reconstruction of the image. Filtered backprojection is the most commonly
used algorithm for computed tomography systems.

to the "correct” image when there are an infinite number of views and an
infinite number of points per view.

The filter kernel used in this technique will be discussed shortly. For now,
notice how the profiles have been changed by the filter. The image in this
example is a uniform white circle surrounded by a black background (a
pillbox). Each of the acquired views has a flat background with a rounded
region representing the white circle. Filtering changes the views in two
significant ways. First, the top of the pulse is made flat, resulting in the final
backprojection creating a uniform signal level within the circle. Second,
negative spikes have been introduced at the sides of the pulse. When
backprojected, these negative regions counteract the blur.

The fourth method is called Fourier reconstruction. In the spatial domain,
CT reconstruction involves the relationship between a two-dimensional image
and its set of one-dimensional views. By taking the two-dimensional Fourier
transform of the image and the one-dimensional Fourier transform of each of
its views, the problem can be examined in the frequency domain. Asit turns
out, the relationship between an image and its views is far simpler in the
frequency domain than in the spatial domain. The frequency domain analysis
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of this problem is a milestone in CT technology called the Fourier slice
theorem.

Figure 25-18 shows how the problem looks in both the spatial and the
frequency domains. In the spatial domain, each view is found by integrating
the image along rays at a particular angle. In the frequency domain, the
image spectrum is represented in this illustration by a two-dimensional grid.
The spectrum of each view (a one-dimensional signal) is represented by a
dark line superimposed on the grid. As shown by the positioning of the
lines on the grid, the Fourier slice theorem states that the spectrum of a
view is identical to the values along a line (slice) through the image
spectrum. For instance, the spectrum of view 1 is the same as the center
column of the image spectrum, and the spectrum of view 3 is the same as
the center row of the image spectrum. Notice that the spectrum of each
view is positioned on the grid at the same angle that the view was originally
acquired. All these frequency spectra include the negative frequencies and
are displayed with zero frequency at the center.

Fourier reconstruction of a CT image requires three steps. First, the one-
dimensional FFT is taken of each view. Second, these view spectra are used
to calculate the two-dimensional frequency spectrum of the image, as outlined
by the Fourier slice theorem. Since the view spectra are arranged radially, and
the correct image spectrum is arranged rectangularly, an interpolation routine
is needed to make the conversion. Third, the inverse FFT is taken of the image
spectrum to obtain the reconstructed image.

Spatial Domain Frequency Domain

view 3

view 1

’{\ 0 Column N-1

N spectrum
of view 2

\ spectrum
of view 3

Row

N-1

*x
J AN

- punm o
: of the image
1mage (the grid)

FIGURE 25-18

The Fourier Slice Theorem. The Fourier Slice Theorem describes the relationship between an image and
itsviewsin the frequency domain. Inthe spatial domain, each view isfound by integrating the image along
raysat aparticular angle. Inthefrequency domain, the spectrum of each view isaone-dimensional "slice"
of the two-dimensional image spectrum.
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Backprojection filter. The frequency response of the backprojection filter is shown in (&), and the
corresponding filter kernel is shownin (b). Equation 25-2 provides the values for thefilter kernel.

This "radial to rectangular" conversion is also the key for understanding filtered
backprojection. The radial arrangement is the spectrum of the backprojected
image, while the rectangular grid is the spectrum of the correct image. If we
compare one small region of the radial spectrum with the corresponding region
of the rectangular grid, we find that the sample values are identical. However,
they have a different sample density. The correct spectrum has uniformly
spaced points throughout, as shown by the even spacing of the rectangular grid.
In comparison, the backprojected spectrum has a higher sample density near the
center because of itsradial arrangement. In other words, the spokes of a wheel
are closer together near the hub. This issue does not affect Fourier
reconstruction because the interpolation is from the values of the nearest
neighbors, not their density.

The filter in filtered backprojection cancels this unequal sample density. In
particular, the frequency response of the filter must be the inverse of the
sample density. Since the backprojected spectrum has a density of 1/f, the
appropriate filter has a frequency response of H[f] = f. This frequency
response is shown in Fig. 25-19a. The filter kernel is then found by taking the
inverse Fourier transform, as shown in (b). Mathematically, the filter kernel
is given by:

EQUATION 25-2

The filter kernel for filtered

backprojection. Figure 25-19b
shows a graph of this kernel.

h[o] = 1

h[k] =0 for even values of k
2

h[k] = alm for odd values of k

k2
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Before leaving the topic of computed tomography, it should be mentioned
that there are several similar imaging techniques in the medical field. All
use extensive amounts of DSP. Positron emission tomography (PET)
involves injecting the patient with a mildly radioactive compound that emits
positrons. Immediately after emission, the positron annihilates with an
electron, creating two gamma rays that exit the body in exactly opposite
directions. Radiation detectors placed around the patient look for these
back-to-back gamma rays, identifying the location of the line that the
gamma rays traveled along. Since the point where the gamma rays were
created must be somewhere along this line, a reconstruction algorithm
similar to computed tomography can be used. This results in an image that
looks similar to CT, except that brightness is related to the amount of the
radioactive material present at each location. A unique advantage of PET
is that the radioactive compounds can be attached to various substances
used by the body in some manner, such as glucose. The reconstructed image
is then related to the concentration of this biological substance. This allows
the imaging of the body's physiology rather than simple anatomy. For
example, images can be produced showing which portions of the human
brain are involved in various mental tasks.

A more direct competitor to computed tomography is magnetic resonance
imaging (MRI), which is now found in most major hospitals. This
technique was originally developed under the name nuclear magnetic
resonance (NMR). The name change was for public relations when local
governments protested the use of anything nuclear in their communities. It
was often an impossible task to educate the public that the term nuclear
simply referred to the fact that all atoms contain a nucleus. An MRI scan
is conducted by placing the patient in the center of a powerful magnet.
Radio waves in conjunction with the magnetic field cause selected nuclei in
the body to resonate, resulting in the emission of secondary radio waves.
These secondary radio waves are digitized and form the data set used in the
MRI reconstruction algorithms. The result is a set of images that appear
very similar to computed tomography. The advantages of MRI are
numerous. good soft tissue discrimination, flexible slice selection, and not
using potentially dangerous x-ray radiation. On the negative side, MRI is
a more expensive technique than CT, and poor for imaging bones and other
hard tissues. CT and MRI will be the mainstays of medical imaging for
many years to come.
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Linear Image Processing

Linear image processing is based on the same two techniques as conventional DSP: convolution
and Fourier analysis. Convolution is the more important of these two, since images have their
information encoded in the spatial domain rather than the frequency domain. Linear filtering can
improve images in many ways: sharpening the edges of objects, reducing random noise, correcting
for unequal illumination, deconvolution to correct for blur and motion, etc. These procedures are
carried out by convolving the original image with an appropriate filter kernel, producing the
filtered image. A serious problem with image convolution is the enormous number of calculations
that need to be performed, often resulting in unacceptably long execution times. This chapter
presents strategies for designing filter kernels for various image processing tasks. Two important
techniques for reducing the execution time are also described: convolution by separability and
FFT convolution.

Convolution

Image convolution works in the same way as one-dimensional convolution. For
instance, images can be viewed as a summation of impulses, i.e., scaled and
shifted delta functions. Likewise, linear systems are characterized by how they
respond to impulses; that is, by their impulse responses. As you should expect,
the output image from a system is equal to the input image convolved with the
system's impul se response.

The two-dimensional delta function is an image composed of all zeros, except
for asingle pixel at: row = 0, column = 0, which has a value of one. For now,
assume that the row and column indexes can have both positive and negative
values, such that the one is centered in a vast sea of zeros. When the delta
function is passed through a linear system, the single nonzero point will be
changed into some other two-dimensional pattern. Since the only thing that can
happen to a point is that it spreads out, the impulse response is often caled the
point spread function (PSF) in image processing jargon.

397
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The human eye provides an excellent example of these concepts. As described
in the last chapter, the first layer of the retina transforms an image represented
as a pattern of light into an image represented as a pattern of nerve impulses.
The second layer of the retina processes this neural image and passes it to the
third layer, the fibers forming the optic nerve. Imagine that the image being
projected onto the retina is a very small spot of light in the center of a dark
background. That is, an impulse isfed into the eye. Assuming that the system
is linear, the image processing taking place in the retina can be determined by
inspecting the image appearing at the optic nerve. In other words, we want to
find the point spread function of the processing. We will revisit the
assumption about linearity of the eye later in this chapter.

Figure 24-1 outlines this experiment. Figure (a) illustrates the impulse striking
the retina while (b) shows the image appearing at the optic nerve. The middle
layer of the eye passes the bright spike, but produces a circular region of
increased darkness. The eye accomplishes this by a process known as lateral
inhibition. If a nerve cell in the middle layer is activated, it decreases the
ability of its nearby neighbors to become active. When a complete image is
viewed by the eye, each point in the image contributes a scaled and shifted
version of this impulse response to the image appearing at the optic nerve. In
other words, the visual image is convolved with this PSF to produce the neural
image transmitted to the brain. The obvious question is. how does convolving
a viewed image with this PSF improve the ability of the eye to understand the
world?

a. Image at first layer b. Image at third layer

FIGURE 24-1

The PSF of the eye. The middle layer of the retina changes an impulse, shown in (&), into an impulse
surrounded by adark area, shown in (b). This point spread function enhances the edges of objects.
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a. True brightness

FIGURE 24-2

Mach bands. Image processing in the
retina results in a slowly changing edge,
asin (a), being sharpened, asin (b). This
makes it easier to separate objects in the
image, but produces an optical illusion
called Mach bands. Near the edge, the
overshoot makes the dark region look
darker, and the light region look lighter.
This produces dark and light bands that
run parallel to the edge.

b. Perceived brightness

Humans and other animals use vision to identify nearby objects, such as
enemies, food, and mates. This is done by distinguishing one region in the
image from another, based on differences in brightness and color. In other
words, the first step in recognizing an object is to identify its edges, the
discontinuity that separates an object from its background. The middle layer
of the retina helps this task by sharpening the edgesin the viewed image. As
an illustration of how this works, Fig. 24-2 shows an image that slowly
changes from dark to light, producing a blurry and poorly defined edge. Figure
(a) shows the intensity profile of this image, the pattern of brightness entering
the eye. Figure (b) shows the brightness profile appearing on the optic nerve,
the image transmitted to the brain. The processing in the retina makes the edge
between the light and dark areas appear more abrupt, reinforcing that the two
regions are different.

The overshoot in the edge response creates an interesting optical illusion. Next
to the edge, the dark region appears to be unusually dark, and the light region
appears to be unusually light. The resulting light and dark strips are called
Mach bands, after Ernst Mach (1838-1916), an Austrian physicist who first
described them.

As with one-dimensional signals, image convolution can be viewed in two
ways. from the input, and from the output. From the input side, each pixel in
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the input image contributes a scaled and shifted version of the point spread
function to the output image. As viewed from the output side, each pixel in
the output image is influenced by a group of pixels from the input signal. For
one-dimensional signals, this region of influence is the impul se response flipped
left-for-right. For image signals, it is the PSF flipped left-for-right and top-
for-bottom. Since most of the PSFs used in DSP are symmetrical around the
vertical and horizonal axes, these flips do nothing and can be ignored. Later
in this chapter we will look at nonsymmetrical PSFs that must have the flips
taken into account.

Figure 24-3 shows several common PSFs. In (a), the pillbox has a circular top
and straight sides. For example, if the lens of a camerais not properly focused,
each point in the image will be projected to a circular spot on the image sensor
(look back at Fig. 23-2 and consider the effect of moving the projection screen
toward or away from the lens). In other words, the pillbox is the point spread
function of an out-of-focus lens.

The Gaussian, shown in (b), is the PSF of imaging systems limited by random
imperfections. For instance, the image from a telescope is blurred by
atmospheric turbulence, causing each point of light to become a Gaussian in the
final image. Image sensors, such as the CCD and retina, are often limited by
the scattering of light and/or electrons. The Central Limit Theorem dictates
that a Gaussian blur results from these types of random processes.

The pillbox and Gaussian are used in image processing the same as the moving
average filter is used with one-dimensional signals. An image convolved with
these PSFs will appear blurry and have less defined edges, but will be lower
in random noise. These are called smoothing filters, for their action in the
time domain, or low-pass filters, for how they treat the frequency domain.
The squar e PSF, shown in (c), can aso be used as a smoothing filter, but it
is not circularly symmetric. This results in the blurring being different in the
diagonal directions compared to the vertical and horizontal. This may or may
not be important, depending on the use.

The opposite of a smoothing filter is an edge enhancement or high-pass
filter. The spectral inversion technique, discussed in Chapter 14, is used to
change between the two. As illustrated in (d), an edge enhancement filter
kernel is formed by taking the negative of a smoothing filter, and adding a
delta function in the center. The image processing which occurs in the retina
is an example of this type of filter.

Figure (e) shows the two-dimensional sinc function. One-dimensional signal
processing uses the windowed-sinc to separate frequency bands. Since images
do not have their information encoded in the frequency domain, the sinc
function is seldom used as an imaging filter kernel, although it does find use
in some theoretical problems. The sinc function can be hard to use because its
tails decrease very slowly in amplitude (1/x), meaning it must be treated as
infinitely wide. In comparison, the Gaussian's tails decrease very rapidly
(e’xz) and can eventually be truncated with no ill effect.
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a. Pillbox
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FIGURE 24-3

Common point spread functions. The pillbox,
Gaussian, and square, shown in (a), (b), & (c),
are common smoothing (low-pass) filters. Edge
enhancement (high-pass) filters are formed by
subtracting a low-pass kernel from an impulse,
as shownin (d). Thesinc function, (e), is used
very little in image processing because images
have their information encoded in the spatial
domain, not the frequency domain.

401
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d. Edge enhancement
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All these filter kernels use negative indexes in the rows and columns, allowing
the PSF to be centered at row = 0 and column = 0. Negative indexes are often
eliminated in one-dimensional DSP by shifting the filter kernel to the right until
all the nonzero samples have a positive index. This shift moves the output

signal by an equal amount, which is usually of no concern.

In comparison, a

shift between the input and output images is generally not acceptable.
Correspondingly, negative indexes are the norm for filter kernels in image

processing.
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A problem with image convolution is that a large number of calculations are
involved. For instance, when a 512 by 512 pixel image is convolved with a 64
by 64 pixel PSF, more than a billion multiplications and additions are needed
(i.e.,, 64x64x512x512). The long execution times can make the techniques
impractical. Three approaches are used to speed things up.

The first strategy is to use a very small PSF, often only 3x3 pixels. Thisis
carried out by looping through each sample in the output image, using
optimized code to multiply and accumulate the corresponding nine pixels from
the input image. A surprising amount of processing can be achieved with a
mere 3x3 PSF, because it is large enough to affect the edges in an image.

The second strategy is used when a large PSF is needed, but its shape isn't
critical. This calls for afilter kernel that is separable, a property that allows
the image convolution to be carried out as a series of one-dimensional
operations. This can improve the execution speed by hundreds of times.

The third strategy is FFT convolution, used when the filter kernel is large and
has a specific shape. Even with the speed improvements provided by the
highly efficient FFT, the execution time will be hideous. Let's take a closer
look at the details of these three strategies, and examples of how they are used
in image processing.

3x3 Edge Modification

Figure 24-4 shows several 3x3 operations. Figure (a) is an image acquired by
an airport x-ray baggage scanner. When this image is convolved with a 3x3
delta function (a one surrounded by 8 zeros), the image remains unchanged.
While this is not interesting by itself, it forms the baseline for the other filter
kernels.

Figure (b) shows the image convolved with a 3x3 kernel consisting of a one,
anegative one, and 7 zeros. Thisis called the shift and subtract operation,
because a shifted version of the image (corresponding to the -1) is subtracted
from the original image (corresponding to the 1). This processing produces the
optical illusion that some objects are closer or farther away than the
background, making a 3D or embossed effect. The brain interprets images as
if the lighting is from above, the normal way the world presents itself. If the
edges of an object are bright on the top and dark on the bottom, the object is
perceived to be poking out from the background. To see another interesting
effect, turn the picture upside down, and the objects will be pushed into the
background.

Figure (c) shows an edge detection PSF, and the resulting image. Every
edge in the original image is transformed into narrow dark and light bands
that run parallel to the original edge. Thresholding this image can isolate
either the dark or light band, providing a simple algorithm for detecting the
edges in an image.
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3x3 edge modification. Theoriginal image, (a), was acquired on an airport x-ray baggage scanner. The shift and subtract
operation, shown in (b), results in a pseudo three-dimensional effect. The edge detection operator in (c) removes all
contrast, leaving only the edgeinformation. The edge enhancement filter, (d), adds various ratios of images (a) and (c),
determined by the parameter, k. A value of k = 2 was used to create thisimage.

A common image processing technique is shown in (d): edge enhancement.
This is sometimes called a sharpening operation. In (a), the objects have good
contrast (an appropriate level of darkness and lightness) but very blurry edges.
In (c), the objects have absolutely no contrast, but very sharp edges. The
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Convolution

EQUATION 24-1

strategy is to multiply the image with good edges by a constant, k, and add it
to the image with good contrast. Thisis equivalent to convolving the original
image with the 3x3 PSF shown in (d). If k is set to 0, the PSF becomes a delta
function, and the image is left unchanged. As k is made larger, the image
shows better edge definition. For the image in (d), a value of k = 2 was used:
two parts of image (c) to one part of image (a). This operation mimics the
eye's ability to sharpen edges, allowing objects to be more easily separated
from the background.

Convolution with any of these PSFs can result in negative pixel values
appearing in the final image. Even if the program can handle negative values
for pixels, the image display cannot. The most common way around thisisto
add an offset to each of the calculated pixels, as is done in these images. An
alternative is to truncate out-of-range values.

by Separability

Thisis atechnique for fast convolution, as long as the PSF is separable. A
PSF is said to be separable if it can be broken into two one-dimensional
signals: a vertical and a horizontal projection. Figure 24-5 shows an example
of a separable image, the square PSF. Specifically, the value of each pixel in
the image is equal to the corresponding point in the horizontal projection
multiplied by the corresponding point in the vertical projection. In
mathematical form:

Image separation. An imageisreferred to _
asseparableif it can be decomposed into x[r,c] = vert[r] x horz[c]
horizontal and vertical projections.

where X[r,c] is the two-dimensional image, and vert[r] & horZc] are the one-
dimensional projections. Obviously, most images do not satisfy this
requirement. For example, the pillbox is not separable. There are, however,
an infinite number of separable images. This can be understood by generating
arbitrary horizontal and vertical projections, and finding the image that
corresponds to them. For example, Fig. 24-6 illustrates this with profiles that
are double-sided exponentials. The image that corresponds to these profilesis
then found from Eq. 24-1. When displayed, the image appears as a diamond
shape that exponentially decays to zero as the distance from the origin
increases.

In most image processing tasks, the ideal PSF is circularly symmetric, such
as the pillbox. Even though digitized images are usually stored and
processed in the rectangular format of rows and columns, it is desired to
modify the image the same in all directions. This raises the question: is
there a PSF that is circularly symmetric and separable? The answer is, yes,
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FIGURE 24-5

Separation of the rectangular PSF. A
PSF is said to be separable if it can be
decomposed into horizontal and vertical
profiles. Separable PSFs are important
because they can be rapidly convolved.
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FIGURE 24-6

Creation of a separable PSF. An infinite number of separable PSFs can be generated by defining arbitrary
projections, and then cal cul ating the two-dimensional function that correspondsto them. In thisexample, the
profiles are chosen to be double-sided exponentials, resulting in a diamond shaped PSF.
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FIGURE 24-7

Separation of the Gaussian. The Gaussianis
the only PSF that is circularly symmetric
and separable. This makes it a common
filter kernel in image processing.
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but there is only one, the Gaussian. Asisshownin Fig. 24-7, atwo-dimensional
Gaussian image has projections that are also Gaussians. The image and
projection Gaussians have the same standard deviation.

To convolve an image with a separable filter kernel, convolve each row in the
image with the horizontal projection, resulting in an intermediate image. Next,
convolve each column of this intermediate image with the vertical projection
of the PSF. The resulting image is identical to the direct convolution of the
original image and the filter kernel. If you like, convolve the columns first and
then the rows; the result is the same.

The convolution of an NxN image with an MxM filter kernel requires a time
proportional to N2M 2. In other words, each pixel in the output image depends
on all the pixelsin the filter kernel. In comparison, convolution by separability
only requires a time proportional to N2M. For filter kernels that are hundreds
of pixels wide, this technique will reduce the execution time by a factor of
hundreds.

Things can get even better. If you are willing to use a rectangular PSF (Fig.
24-5) or a double-sided exponential PSF (Fig. 24-6), the calculations are even
more efficient. This is because the one-dimensional convolutions are the
moving average filter (Chapter 15) and the bidirectional single pole filter
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(Chapter 19), respectively. Both of these one-dimensional filters can be
rapidly carried out by recursion. This results in an image convolution time
proportional to only N2, completely independent of the size of the PSF. In
other words, an image can be convolved with as large a PSF as needed, with
only a few integer operations per pixel. For example, the convolution of a
512x512 image requires only a few hundred milliseconds on a personal
computer. That's fast! Don't like the shape of these two filter kernels?
Convolve the image with one of them several times to approximate a Gaussian
PSF (guaranteed by the Central Limit Theorem, Chapter 7). These are great
algorithms, capable of snatching success from the jaws of failure. They are
well worth remembering.

Example of a Large PSF: lllumination Flattening

A common application requiring a large PSF is the enhancement of images
with unequal illumination. Convolution by separability is an ideal
algorithm to carry out this processing. With only a few exceptions, the
images seen by the eye are formed from reflected light. This means that a
viewed image is equal to the reflectance of the objects multiplied by the
ambient illumination. Figure 24-8 shows how this works. Figure (a)
represents the reflectance of a scene being viewed, in this case, a series of
light and dark bands. Figure (b) illustrates an example illumination signal,
the pattern of light falling on (a). Asin the real world, the illumination
slowly varies over the imaging area. Figure (c) is the image seen by the
eye, equal to the reflectance image, (a), multiplied by the illumination
image, (b). The regions of poor illumination are difficult to view in (c) for
two reasons: they are too dark and their contrast is too low (the difference
between the peaks and the valleys).

To understand how this relates to the problem of every day vision, imagine you
are looking at two identically dressed men. One of them is standing in the
bright sunlight, while the other is standing in the shade of a nearby tree. The
percent of the incident light reflected from both men is the same. For instance,
their faces might reflect 80% of the incident light, their gray shirts 40% and
their dark pants 5%. The problem is, the illumination of the two might be, say,
ten times different. This makes the image of the man in the shade ten times
darker than the person in the sunlight, and the contrast (between the face, shirt,
and pants) ten times less.

The goal of the image processing is to flatten the illumination component
in the acquired image. In other words, we want the final image to be
representative of the objects' reflectance, not the lighting conditions. In
terms of Fig. 24-8, given (c), find (a). Thisis a nonlinear filtering problem,
since the component images were combined by multiplication, not addition.
While this separation cannot be performed perfectly, the improvement can
be dramatic.

To start, we will convolve image (c) with alarge PSF, one-fifth the size of the
entire image. The goal is to eliminate the sharp features in (c), resulting
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FIGURE 24-8

Model of image formation. A viewed image, (c), results from the multiplication of an illumination
pattern, (b), by areflectance pattern, (a). The goal of the image processing is to modify (c) to make it
look morelike (a). Thisisperformedin Figs. (d), (e) and (f) on the opposite page.

in an approximation to the original illumination signal, (b). This is where
convolution by separability is used. The exact shape of the PSF is not
important, only that it is much wider than the features in the reflectance image.
Figure (d) is the result, using a Gaussian filter kernel.

Since a smoothing filter provides an estimate of the illumination image, we will
use an edge enhancement filter to find the reflectance image. That is, image
(c) will be convolved with afilter kernel consisting of a delta function minus
aGaussian. To reduce execution time, thisis done by subtracting the smoothed
image in (d) from the original image in (c). Figure (€) shows the result. It
doesn't work! While the dark areas have been properly lightened, the contrast
in these areas is still terrible.

Linear filtering performs poorly in this application because the reflectance and
illumination signals were original combined by multiplication, not addition.
Linear filtering cannot correctly separate signals combined by a nonlinear
operation. To separate these signals, they must be unmultiplied. In other
words, the original image should be divided by the smoothed image, as is
shown in (f). This corrects the brightness and restores the contrast to the
proper level.

This procedure of dividing the images is closely related to homomor phic
processing, previously described in Chapter 22. Homomorphic processing is
a way of handling signals combined through a nonlinear operation. The
strategy is to change the nonlinear problem into a linear one, through an
appropriate mathematical operation. When two signals are combined by
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FIGURE 24-8 (continued)

Figure (d) is asmoothed version of (c), used as an approximation to the illumination signal. Figure (€)
shows an approximation to the reflectance image, created by subtracting the smoothed image from the
viewed image. A better approximation is shown in (f), obtained by the nonlinear process of dividing the

two images.

multiplication, homomorphic processing starts by taking the logarithm of the
acquired signal. With the identity: log(axb) = log(a) + log(b), the problem of
separating multiplied signals is converted into the problem of separating added
signals. For example, after taking the logarithm of the image in (c), a linear
high-pass filter can be used to isolate the logarithm of the reflectance image.
As before, the quickest way to carry out the high-pass filter is to subtract a
smoothed version of the image. The antilogarithm (exponent) is then used to
undo the logarithm, resulting in the desired approximation to the reflectance
image.

Which is better, dividing or going along the homomorphic path? They are
nearly the same, since taking the logarithm and subtracting is equal to dividing.
The only difference is the approximation used for the illumination image. One
method uses a smoothed version of the acquired image, while the other uses a
smoothed version of the logarithm of the acquired image.

This technique of flattening the illumination signal is so useful it has been
incorporated into the neural structure of the eye. The processing in the
middle layer of the retina was previously described as an edge enhancement
or high-pass filter. While thisis true, it doesn't tell the whole story. The
first layer of the eye is nonlinear, approximately taking the logarithm of the
incoming image. This makes the eye a homomorphic processor. Just as
described above, the logarithm followed by a linear edge enhancement filter
flattens the illumination component, allowing the eye to see under poor
lighting conditions. Another interesting use of homomorphic processing
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occurs in photography. The density (darkness) of a negative is equal to the
logarithm of the brightness in the final photograph. This means that any
manipulation of the negative during the development stage is a type of
homomorphic processing.

Before leaving this example, there is a nuisance that needs to be mentioned.
As discussed in Chapter 6, when an N point signal is convolved with an M
point filter kernel, the resulting signal is N+M-1 points long. Likewise, when
an MxM image is convolved with an NxN filter kernel, the result is
an (M+N-1) x (M+N-1) image. The problem is, it is often difficult to manage
a changing image size. For instance, the allocated memory must change, the
video display must be adjusted, the array indexing may need atering, etc. The
common way around thisisto ignore it; if we start with a 512x512 image, we
want to end up with a 512x512 image. The pixels that do not fit within the
original boundaries are discarded.

While this keeps the image size the same, it doesn't solve the whole problem;
these is still the boundary condition for convolution. For example, imagine
trying to calculate the pixel at the upper-right corner of (d). Thisis done by
centering the Gaussian PSF on the upper-right corner of (c). Each pixel in (c)
is then multiplied by the corresponding pixel in the overlaying PSF, and the
products are added. The problem is, three-quarters of the PSF lies outside the
defined image. The easiest approach is to assign the undefined pixels a value
of zero. Thisishow (d) was created, accounting for the dark band around the
perimeter of theimage. That is, the brightness smoothly decreases to the pixel
value of zero, exterior to the defined image.

Fortunately, this dark region around the boarder can be corrected (although it
hasn't been in this example). This is done by dividing each pixel in (d) by a
correction factor. The correction factor is the fraction of the PSF that was
immersed in the input image when the pixel was calculated. That is, to correct
an individual pixel in (d), imagine that the PSF is centered on the
corresponding pixel in (¢). For example, the upper-right pixel in (c) results
from only 25% of the PSF overlapping the input image. Therefore, correct this
pixel in (d) by dividing it by a factor of 0.25. This means that the pixelsin the
center of (d) will not be changed, but the dark pixels around the perimeter will
be brightened. To find the correction factors, imagine convolving the filter
kernel with an image having all the pixel values equal to one. The pixelsin
the resulting image are the correction factors needed to eliminate the edge
effect.

Fourier Image Analysis

Fourier analysis is used in image processing in much the same way as with
one-dimensional signals. However, images do not have their information
encoded in the frequency domain, making the techniques much less useful. For
example, when the Fourier transform is taken of an audio signal, the confusing
time domain waveform is converted into an easy to understand frequency
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spectrum. In comparison, taking the Fourier transform of an image converts
the straightforward information in the spatial domain into a scrambled form in
the frequency domain. In short, don't expect the Fourier transform to help you
understand the information encoded in images.

Likewise, don't look to the frequency domain for filter design. The basic
feature in images is the edge, the line separating one object or region from
another object or region. Since an edge is composed of a wide range of
frequency components, trying to modify an image by manipulating the
frequency spectrum is generally not productive. Image filters are normally
designed in the spatial domain, where the information is encoded in its simplest
form. Think in terms of smoothing and edge enhancement operations (the
spatial domain) rather than high-pass and low-pass filters (the frequency
domain).

In spite of this, Fourier image analysis does have several useful properties. For
instance, convolution in the spatial domain corresponds to multiplication in the
frequency domain. This is important because multiplication is a simpler
mathematical operation than convolution. As with one-dimensional signals, this
property enables FFT convolution and various deconvolution techniques.
Another useful property of the frequency domain is the Fourier Slice Theorem,
the relationship between an image and its projections (the image viewed from
its sides). This is the basis of computed tomography, an x-ray imaging
technique widely used medicine and industry.

The frequency spectrum of an image can be calculated in several ways, but the
FFT method presented here is the only one that is practical. The original image
must be composed of N rows by N columns, where N is a power of two, i.e,,
256, 512, 1024, etc. If the size of the original image is not a power of two,
pixels with a value of zero are added to make it the correct size. We will call
the two-dimensional array that holds the image the real array. In addition,
another array of the same size is needed, which we will call the imaginary
array.

The recipe for calculating the Fourier transform of an image is quite simple:
take the one-dimensional FFT of each of the rows, followed by the one-
dimensiona FFT of each of the columns. Specifically, start by taking the FFT
of the N pixel values in row O of the real array. The real part of the FFT's
output is placed back into row 0 of the real array, while the imaginary part of
the FFT's output is placed into row 0 of the imaginary array. After repeating
this procedure on rows 1 through N-1, both the real and imaginary arrays
contain an intermediate image. Next, the procedure is repeated on each of the
columns of the intermediate data. Take the N pixel values from column O of
the real array, and the N pixel values from column 0 of the imaginary array,
and calculate the FFT. The real part of the FFT's output is placed back into
column O of the real array, while the imaginary part of the FFT's output is
placed back into column O of the imaginary array. After thisis repeated on
columns 1 through N-1, both arrays have been overwritten with the image's
frequency spectrum.
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Since the vertical and horizontal directions are equivalent in an image, this
algorithm can also be carried out by transforming the columns first and then
transforming the rows. Regardless of the order used, the result is the same.
From the way that the FFT keeps track of the data, the amplitudes of the low
frequency components end up being at the corners of the two-dimensional
spectrum, while the high frequencies are at the center. The inverse Fourier
transform of an image is calculated by taking the inverse FFT of each row,
followed by the inverse FFT of each column (or vice versa).

Figure 24-9 shows an example Fourier transform of an image. Figure (a) isthe
original image, a microscopic view of the input stage of a 741 op amp
integrated circuit. Figure (b) shows the real and imaginary parts of the
frequency spectrum of this image. Since the frequency domain can contain
negative pixel values, the grayscale values of these images are offset such that
negative values are dark, zero is gray, and positive values are light. The low-
frequency components in an image are normally much larger in amplitude than
the high-frequency components. This accounts for the very bright and dark
pixels at the four corners of (b). Other than this, the spectra of typical images
have no discernable order, appearing random. Of course, images can be
contrived to have any spectrum you desire.

As shown in (c), the polar form of an image spectrum is only slightly easier to
understand. The low-frequencies in the magnitude have large positive values
(the white corners), while the high-frequencies have small positive values (the
black center). The phase looks the same at low and high-frequencies,
appearing to run randomly between -n and © radians.

Figure (d) shows an alternative way of displaying an image spectrum. Since
the spatial domain contains a discrete signal, the frequency domain is
periodic. In other words, the frequency domain arrays are duplicated an
infinite number of times to the left, right, top and bottom. For instance,
imagine atile wall, with each tile being the NxN magnitude shown in (c).
Figure (d) is also an NxN section of thistile wall, but it straddles four tiles;
the center of the image being where the four tiles touch. In other words, (c)
is the same image as (d), except it has been shifted N/2 pixels horizontally
(either left or right) and N/2 pixels vertically (either up or down) in the
periodic frequency spectrum. This brings the bright pixels at the four
corners of (c) together in the center of (d).

Figure 24-10 illustrates how the two-dimensional frequency domain is
organized (with the low-frequencies placed at the corners). Row N/2 and
column N/2 break the frequency spectrum into four quadrants. For the real
part and the magnitude, the upper-right quadrant is a mirror image of the
lower-left, while the upper-left is a mirror image of the lower-right. This
symmetry also holds for the imaginary part and the phase, except that the
values of the mirrored pixels are opposite in sign. In other words, every
point in the frequency spectrum has a matching point placed symmetrically
on the other side of the center of the image (row N/2 and column N/2). One
of the points is the positive frequency, while the other is the matching
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a. Image

FIGURE 24-9

Freguency spectrum of an image. The example image,
shown in (&), is a microscopic photograph of the silicon
surface of an integrated circuit. The frequency spectrum
can be displayed as the real and imaginary parts, shown in
(b), or as the magnitude and phase, shown in (c). Figures
(b) & (c) are displayed with the low-frequencies at the
corners and the high-frequencies at the center. Since the
frequency domain is periodic, the display can be rearranged
to reverse these positions. Thisis shown in (d), where the
magnitude and phase are displayed with the low-frequencies
located at the center and the high-frequencies at the corners.

b. Frequency spectrum displayed
in rectangular form (as the real
and imaginary parts).

Magnitude

c¢. Frequency spectrum displayed
in polar form (as the magnitude
and phase).

Magnitude Phase

d. Frequency spectrum displayed
in polar form, with the spectrum
shifted to place zero frequency at
the center.
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negative frequency, as discussed in Chapter 10 for one-dimensional signals. In
equation form, this symmetry is expressed as.

EQUATION 24-2

Symmetry of the two-dimensional frequency

domain. These equations can be used in both Re X[r,c]
formats, when the low-frequencies are ’
displayed at the corners, or when shifting

places them at the center. In polar form, the

magnitude has the same symmetry asthe real ImX{r,c]
part, while the phase has the same symmetry

asthe imaginary part.

ReX[N-r,N-c]

-ImX[N-r,N-c]

These equations take into account that the frequency spectrum is periodic,
repeating itself every N samples with indexes running from 0 to N-1. In other
words, X[r,N] should be interpreted as X[r,0], X[N,c] as X[O,c], and
X[N,N] as X[0,0]. This symmetry makes four points in the spectrum match
with themselves. These points are located at: [0,0], [0,N/2], [N/2,0] and
[N/2,N/2].

Each pair of points in the frequency domain corresponds to a sinusoid in the
spatial domain. As shown in (a), the value at [0,0] corresponds to the zero
frequency sinusoid in the spatial domain, i.e., the DC component of the image.
There is only one point shown in this figure, because this is one of the points
that is its own match. As shown in (b), (c), and (d), other pairs of points
correspond to two-dimensional sinusoids that ook like waves on the ocean.
One-dimensional sinusoids have a frequency, phase, and amplitude. Two
dimensional sinusoids also have a direction.

The frequency and direction of each sinusoid is determined by the location of
the pair of points in the frequency domain. As shown, draw a line from each
point to the zero frequency location at the outside corner of the quadrant that
the point isin, i.e., [0,0], [0,N/2], [N/2,0], or [N/2,N/2] (as indicated by the
circlesin this figure). The direction of this line determines the direction of the
spatial sinusoid, while its length is proportional to the frequency of the wave.
This results in the low frequencies being positioned near the corners, and the
high frequencies near the center.

When the spectrum is displayed with zero frequency at the center ( Fig. 24-9d),
the line from each pair of pointsis drawn to the DC value at the center of the
image, i.e., [N/2,N/2]. This organization is simpler to understand and work
with, since all the lines are drawn to the same point. Another advantage of
placing zero at the center is that it matches the frequency spectra of continuous
images. When the spatial domain is continuous, the frequency domain is
aperiodic. This places zero frequency at the center, with the frequency
becoming higher in al directions out to infinity. In general, the frequency
spectra of discrete images are displayed with zero frequency at the center
whenever people will view the data, in textbooks, journal articles, and
algorithm documentation. However, most calculations are carried out with the
computer arrays storing data in the other format (low-frequencies at the
corners). Thisis because the FFT has this format.



FIGURE 24-10
Two-dimensional sinusoids.
Image sine and cosine waves
have both a frequency and a
direction. Four examples are
shown here. These spectra
are displayed with the low-
frequencies at the corners.
The circles in these spectra
show the location of zero
frequency.
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Even with the FFT, the time required to calculate the Fourier transform is
a tremendous bottleneck in image processing. For example, the Fourier
transform of a 512x512 image requires several minutes on a personal
computer. This is roughly 10,000 times slower than needed for real time
image processing, 30 frames per second. This long execution time results
from the massive amount of information contained in images. For
comparison, there are about the same number of pixelsin atypical image,
as there are words in this book. Image processing via the frequency domain
will become more popular as computers become faster. This is a twenty-
first century technology; watch it emerge!

FFT Convolution

Even though the Fourier transform is slow, it is still the fastest way to
convolve an image with a large filter kernel. For example, convolving a
512x512 image with a 50x50 PSF is about 20 times faster using the FFT
compared with conventional convolution. Chapter 18 discusses how FFT
convolution works for one-dimensional signals. The two-dimensional version
is a simple extension.

We will demonstrate FFT convolution with an example, an algorithm to locate
a predetermined pattern in an image. Suppose we build a system for inspecting
one-dollar bills, such as might be used for printing quality control,
counterfeiting detection, or payment verification in a vending machine. As
shown in Fig. 24-11, a 100x100 pixel image is acquired of the bill, centered
on the portrait of George Washington. The goal is to search this image for a
known pattern, in this example, the 29x29 pixel image of the face. The
problem is this: given an acquired image and a known pattern, what is the most
effective way to locate where (or if) the pattern appears in the image? If you
paid attention in Chapter 6, you know that the solution to this problem is
correlation (a matched filter) and that it can be implemented by using
convolution.

Before performing the actual convolution, there are two modifications that need
to be made to turn the target image into a PSF. These are illustrated in Fig.
24-12. Figure (@) shows the target signal, the pattern we are trying to detect.
In (b), the image has been rotated by 180°, the same as being flipped left-for-
right and then flipped top-for-bottom. As discussed in Chapter 7, when
performing correlation by using convolution, the target signal needs to be
reversed to counteract the reversal that occurs during convolution. We will
return to this issue shortly.

The second modification is a trick for improving the effectiveness of the
algorithm. Rather than trying to detect the face in the original image, it is
more effective to detect the edges of the face in the edges of the original
image. This is because the edges are sharper than the original features,
making the correlation have a sharper peak. This step isn't required, but it
makes the results significantly better. In the simplest form, a 3x3 edge
detection filter is applied to both the original image and the target signal
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100 pixels

29 pixels

100 pixels

b. Target

a. Image to be searched

FIGURE 24-11

Target detection example. The problem isto search the 100x100 pixel image of George Washington,
(a), for the target pattern, (b), the 29x29 pixel face. The optimal solution is correlation, which can be
carried out by convolution.

before the correlation is performed. From the associative property of
convolution, this is the same as applying the edge detection filter to the target
signal twice, and leaving the original image alone. In actual practice, applying
the edge detection 3x3 kernel only once is generally sufficient. Thisis how (b)
is changed into (c) in Fig. 24-12. This makes (c) the PSF to be used in the
convolution

Figure 24-13 illustrates the details of FFT convolution. In this example, we
will convolve image (a) with image (b) to produce image (c). The fact that
these images have been chosen and preprocessed to implement correlation
is irrelevant; this is a flow diagram of convolution. The first step is to pad
both signals being convolved with enough zeros to make them a power
of two in size, and big enough to hold the final image. For instance, when
images of 100x100 and 29x29 pixels are convolved, the resulting image
will be 128x128 pixels. Therefore, enough zeros must be added to (a) and
(b) to make them each 128x128 pixels in size. If this isn't done, circular

a. Origina b. Rotated c. Edge detection

FIGURE 24-12

Development of acorrelation filter kernel. Thetarget signal isshownin (a). In (b) it isrotated by 180°
to undo the rotation inherent in convolution, allowing correlation to be performed. Applying an edge
detection filter resultsin (c), the filter kernel used for this example.
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convolution takes place and the final image will be distorted. If you are having
trouble understanding these concepts, go back and review Chapter 18, where
the one-dimensional case is discussed in more detail.

The FFT algorithm is used to transform (a) and (b) into the frequency
domain. Thisresultsin four 128x128 arrays, the real and imaginary parts
of the two images being convolved. Multiplying the real and imaginary
parts of (a) with the real and imaginary parts of (b), generates the real and
imaginary parts of (c). (If you need to be reminded how this is done, see
Eq. 9-1). Taking the Inverse FFT completes the algorithm by producing the
final convolved image.

The value of each pixel in a correlation image is a measure of how well the
target image matches the searched image at that point. In this particular
example, the correlation image in (c) is composed of noise plus a single bright
peak, indicating a good match to the target signal. Simply locating the
brightest pixel in this image would specify the detected coordinates of the face.
If we had not used the edge detection modification on the target signal, the peak
would still be present, but much less distinct.

While correlation is a powerful tool in image processing, it suffers from a
significant limitation: the target image must be exactly the same size and
rotational orientation as the corresponding area in the searched image. Noise
and other variations in the amplitude of each pixel are relatively unimportant,
but an exact spatial match is critical. For example, this makes the method
almost useless for finding enemy tanks in military reconnaissance photos,
tumors in medical images, and handguns in airport baggage scans. One
approach is to correlate the image multiple times with a variety of shapes and
rotations of the target image. This works in principle, but the execution time
will make you loose interest in a hurry.

A Closer Look at Image Convolution

Let's use this last example to explore two-dimensional convolution in more
detail. Just as with one dimensional signals, image convolution can be
viewed from either the input side or the output side. As you recall from
Chapter 6, the input viewpoint is the best description of how convolution
works, while the output viewpoint is how most of the mathematics and
algorithms are written. Y ou need to become comfortable with both these
ways of looking at the operation.

Figure 24-14 shows the input side description of image convolution. Every
pixel in the input image results in a scaled and shifted PSF being added to
the output image. The output image is then calculated as the sum of al the
contributing PSFs. This illustration show the contribution to the output
image from the point at location [r,c] in the input image. The PSF is
shifted such that pixel [0,0] in the PSF aligns with pixel [r,c] in the output
image. If the PSF is defined with only positive indexes, such as in this
example, the shifted PSF will be entirely to the lower-right of [r,c]. Don't
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Spatial Domain

Frequency Domain

a Kernd, h[r,c]

c. Correlation, y[r,c]

HI[r,c]

Re Im
X
X[r,q]

Re Im
Y[r.c]

Re Im

FIGURE 24-13

Flow diagram of FFT image convolution. Theimagesin (a) and (b) are transformed into the frequency domain
by using the FFT. Thesetwo frequency spectraare multiplied, and the Inverse FFT is used to move back into
the spatial domain. In this example, the original images have been chosen and preprocessed to implement

correlation through the action of convolution.
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Input image Output image
column column
0 Cc N-1 0 Cc N-1
0 . 0 .

N-1 : N-1

FIGURE 24-14

Image convolution viewed from the input side. Each pixel in the input image contributes a scaled
and shifted PSF to the output image. The output image is the sum of these contributions. The face
isinverted in thisillustration because this is the PSF we are using.

be confused by the face appearing upside down in this figure; this upside down
face is the PSF we are using in this example (Fig. 24-13d). In the input side
view, there is no rotation of the PSF, it is simply shifted.

Image convolution viewed from the output is illustrated in Fig. 24-15. Each
pixel in the output image, such as shown by the sample at [r,c], receives a
contribution from many pixelsin the input image. The PSF is rotated by 180°
around pixel [0,0], and then shifted such that pixel [0,0] in the PSF is aligned
with pixel [r,c] in the input image. If the PSF only uses positive indexes, it
will be to the upper-left of pixel [r,c] in the input image. The value of the
pixel at [r,c] in the output image is found by multiplying the pixels in the
rotated PSF with the corresponding pixels in the input image, and summing the
products. This procedure is given by Eq. 24-3, and in the program of Table
24-1.

EQUATION 24-3
Image convolution. The images X , ] and
h[ , ] are convolved to produce image, y[ , 1. M-1 M-1

The size of h[, ] is MxM pixels, with the y[r,c] Z Z h[k,j] X[I’ K, C—j]

indexes running from 0 to M-1. In this R
equation, an individual pixel in the output 0T
image, yir,c], is calculated according to the
output sideview. Theindexesj and k are used
to loop through the rows and columns of h[ , ]
to calcul ate the sum-of-products.

Notice that the PSF rotation resulting from the convolution has undone the
rotation made in the design of the PSF. This makes the face appear upright
in Fig. 24-15, allowing it to be in the same orientation as the pattern being
detected in the input image. That is, we have successfully used convolution
to implement correlation. Compare Fig. 24-13c with Fig. 24-15 to see how
the bright spot in the correlation image signifies that the target has been
detected.
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Input image Output image
column column
0 Cc N-1 0 Cc N-1
0 . 0 .

N-1 : N-1

FIGURE 24-15
Image convolution viewed from the output side. Each pixel inthe output signal isequal to the sum
of the pixelsin the rotated PSF multiplied by the corresponding pixels in the input image.

FFT convolution provides the same output image as the conventional
convolution program of Table 24-1. Isthe reduced execution time provided by
FFT convolution really worth the additional program complexity? Let's take
a closer look. Figure 24-16 shows an execution time comparison between
conventional convolution using floating point (labeled FP), conventional
convolution using integers (labeled INT), and FFT convolution using floating
point (labeled FFT). Data for two different image sizes are presented,
512x512 and 128x128.

First, notice that the execution time required for FFT convolution does not
depend on the size of the kernel, resulting in flat lines in this graph. On a 100
MHz Pentium personal computer, a 128x128 image can be convolved

100 CONVENTIONAL IMAGE CONVOLUTION

110

120 DIM X[99,99] 'holds the input image, 100x100 pixels

130 DIM H[28,28] 'holds the filter kernel, 29x29 pixels

140 DIM Y[127,127] 'holds the output image, 128x128 pixels

150"

160 FORR% =0TO 127 'loop through each row and column in the output
170FORC% =0TO 127 'image calculating the pixel value via Eq. 24-3

180"

190 Y[R%,C%] =0 'zero the pixel so it can be used as an accumulator
200"

210 FOR J% =0TO 28 'multiply each pixel in the kernel by the corresponding
220 FORK%=0TO 28 'pixel in the input image, and add to the accumul ator
230 Y[R%,C%] = Y[R%,C%] + H[J%,K%] * X[R%-J%,C%-J%]

240 NEXT K%

250 NEXT J%

260"

270 NEXT C%
280 NEXT R%

290"

300 END

TABLE 24-1
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FIGURE 24-16

Execution time for image convolution. This
graph shows the execution time on a100 MHz
Pentium processor for three image convolution
methods: conventional convolution carried out
with floating point math (FP), conventional
convolution using integers (INT), and FFT
convolution using floating point (FFT). The
two sets of curves are for input image sizes of
512x512 and 128x128 pixels. Using FFT
convolution, the time depends only on the
image size, and not the size of the kernel. In
contrast, conventional convolution dependson
both the image and the kernel size.

Execution time (minutes)

I
0 10 20 30 40 50
Kernel width (pixels)

in about 15 seconds using FFT convolution, while a 512x512 image requires
more than 4 minutes. Adding up the number of calculations shows that the
execution time for FFT convolution is proportional to N2Log,(N), for an NxN
image. That is, a 512x512 image requires about 20 times as long as a
128x128 image.

Conventional convolution has an execution time proportional to N2M?2 for an
NxN image convolved with an MxM kernel. This can be understood by
examining the program in Table 24-1. In other words, the execution time for
conventional convolution depends very strongly on the size of the kernel used.
As shown in the graph, FFT convolution is faster than conventional convolution
using floating point if the kernel is larger than about 10x10 pixels. In most
cases, integers can be used for conventional convolution, increasing the break-
even point to about 30x30 pixels. These break-even points depend slightly on
the size of the image being convolved, as shown in the graph. The concept to
remember is that FFT convolution is only useful for large filter kernels.
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Image Formation & Display

Images are a description of how a parameter varies over a surface. For example, standard visual
images result from light intensity variations across a two-dimensional plane. However, light is
not the only parameter used in scientific imaging. For example, an image can be formed of the
temperature of an integrated circuit, blood velocity in a patient's artery, x-ray emission from a
distant galaxy, ground motion during an earthquake, etc. These exotic images are usually
converted into conventional pictures (i.e., light images), so that they can be evaluated by the
human eye. Thisfirst chapter on image processing describes how digital images are formed and
presented to human observers.

Digital Image Structure

Figure 23-1 illustrates the structure of a digital image. This example image is
of the planet Venus, acquired by microwave radar from an orbiting space
probe. Microwave imaging is necessary because the dense atmosphere blocks
visible light, making standard photography impossible. The image shown is
represented by 40,000 samples arranged in a two-dimensional array of 200
columns by 200 rows. Just as with one-dimensional signals, these rows and
columns can be numbered 0 through 199, or 1 through 200. In imaging jargon,
each sample is called a pixel, a contraction of the phrase: picture element.
Each pixel in this example is a single number between 0 and 255. When the
image was acquired, this number related to the amount of microwave energy
being reflected from the corresponding location on the planet's surface. To
display this as a visual image, the value of each pixel is converted into a
grayscale, where 0 is black, 255 is white, and the intermediate values are
shades of gray.

Images have their information encoded in the spatial domain, the image
equivalent of the time domain. In other words, features in images are
represented by edges, not sinusoids. This means that the spacing and
number of pixels are determined by how small of features need to be seen,

373



374

The Scientist and Engineer's Guide to Digital Sgnal Processing

rather than by the formal constraints of the sampling theorem. Aliasing can
occur in images, but it is generally thought of as a nuisance rather than a major
problem. For instance, pinstriped suits look terrible on television because the
repetitive pattern is greater than the Nyquist frequency. The aliased
frequencies appear as light and dark bands that move across the clothing as the
person changes position.

A "typical" digital image is composed of about 500 rows by 500 columns. This
is the image quality encountered in television, personnel computer applications,
and general scientific research. Images with fewer pixels, say 250 by 250, are
regarded as having unusually poor resolution. Thisis frequently the case with
new imaging modalities; as the technology matures, more pixels are added.
These low resolution images look noticeably unnatural, and the individual
pixels can often be seen. On the other end, images with more than 1000 by
1000 pixels are considered exceptionally good. This is the quality of the best
computer graphics, high-definition television, and 35 mm motion pictures.
There are also applications needing even higher resolution, requiring several
thousand pixels per side: digitized x-ray images, space photographs, and glossy
advertisements in magazines.

The strongest motivation for using lower resolution images is that there are
fewer pixelsto handle. Thisis not trivial; one of the most difficult problems
in image processing is managing massive amounts of data. For example, one
second of digital audio requires about eight kilobytes. In comparison, one
second of television requires about eight Megabytes. Transmitting a 500 by
500 pixel image over a 33.6 kbps modem requires nearly a minute!  Jumping
to an image size of 1000 by 1000 quadruples these problems.

It is common for 256 gray levels (quantization levels) to be used in image
processing, corresponding to a single byte per pixel. There are several reasons
for this. First, a single byte is convenient for data management, since thisis
how computers usually store data. Second, the large number of pixelsin an
image compensate to a certain degree for a limited number of quantization
steps. For example, imagine a group of adjacent pixels alternating in value
between digital numbers (DN) 145 and 146. The human eye perceives the
region as a brightness of 145.5. In other words, images are very dithered.
Third, and most important, a brightness step size of 1/256 (0.39%) is smaller
than the eye can perceive. An image presented to a human observer will not
be improved by using more than 256 levels.

However, some images need to be stored with more than 8 bits per pixel.
Remember, most of the images encountered in DSP represent nonvisual
parameters. The acquired image may be able to take advantage of more
guantization levels to properly capture the subtle details of the signal. The
point of thisis, don't expect to human eye to see all the information contained
in these finely spaced levels. We will consider ways around this problem
during a later discussion of brightness and contrast.

The value of each pixel in the digital image represents a small region in the
continuous image being digitized. For example, imagine that the Venus
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probe takes samples every 10 meters along the planet's surface as it orbits
overhead. This defines a square sample spacing and sampling grid, with
each pixel representing a 10 meter by 10 meter area. Now, imagine what
happens in a single microwave reflection measurement. The space probe emits
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a highly focused burst of microwave energy, striking the surface in, for
example, a circular area 15 meters in diameter. Each pixel therefore
contains information about this circular area, regardless of the size of the
sampling grid.

This region of the continuous image that contributes to the pixel value is called
the sampling aperture. The size of the sampling aperture is often related to
the inherent capabilities of the particular imaging system being used. For
example, microscopes are limited by the quality of the optics and the
wavelength of light, electronic cameras are limited by random electron diffusion
in the image sensor, and so on. In most cases, the sampling grid is made
approximately the same as the sampling aperture of the system. Resolution in
the final digital image will be limited primary by the larger of the two, the
sampling grid or the sampling aperture. We will return to this topic in Chapter
25 when discussing the spatial resolution of digital images.

Color is added to digital images by using three numbers for each pixel,
representing the intensity of the three primary colors: red, green and blue.
Mixing these three colors generates all possible colors that the human eye can
perceive. A single byte is frequently used to store each of the color
intensities, allowing the image to capture a total of 256x256x256 = 16.8
million different colors.

Color is very important when the goal is to present the viewer with a true
picture of the world, such as in television and still photography. However, this
is usually not how images are used in science and engineering. The purpose
here is to analyze a two-dimensional signal by using the human visual system
as atool. Black and white images are sufficient for this.

Cameras and Eyes

The structure and operation of the eye is very similar to an electronic camera,
and it is natural to discuss them together. Both are based on two major
components; a lens assembly, and an imaging sensor. The lens assembly
captures a portion of the light emanating from an object, and focus it onto the
imaging sensor. The imaging sensor then transforms the pattern of light into
avideo signal, either electronic or neural.

Figure 23-2 shows the operation of the lens. In this example, the image of
an ice skater is focused onto a screen. The term focus means there is a one-
to-one match of every point on the ice skater with a corresponding point on
the screen. For example, consider a1 mm x 1 mm region on the tip of the
toe. In bright light, there are roughly 100 trillion photons of light striking
this one square millimeter area each second. Depending on the
characteristics of the surface, between 1 and 99 percent of these incident
light photons will be reflected in random directions. Only a small portion
of these reflected photons will pass through the lens. For example, only
about one-millionth of the reflected light will pass through a one centimeter
diameter lens located 3 meters from the object.
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projected
image

Focusing by alens. A lens gathers light expanding from a point source, and force it to returnto a
point at another location. Thisallows alensto project an image onto a surface.

Refraction in the lens changes the direction of the individual photons,
depending on the location and angle they strike the glass/air interface. These
direction changes cause light expanding from a single point to return to asingle
point on the projection screen. All of the photons that reflect from the toe and
pass through the lens are brought back together at the "toe" in the projected
image. In asimilar way, a portion of the light coming from any point on the
object will pass through the lens, and be focused to a corresponding point in the
projected image.

Figures 23-3 and 23-4 illustrate the major structures in an electronic camera
and the human eye, respectively. Both are light tight enclosures with a lens
mounted at one end and an image sensor at the other. The camerais filled
with air, while the eye is filled with atransparent liquid. Each lens system has
two adjustable parameters: focus and iris diameter.

If the lens is not properly focused, each point on the object will project to
acircular region on the imaging sensor, causing the image to be blurry. In
the camera, focusing is achieved by physically moving the lens toward or
away from the imaging sensor. In comparison, the eye contains two |lenses,
a bulge on the front of the eyeball called the cornea, and an adjustable lens
inside the eye. The cornea does most of the light refraction, but is fixed in
shape and location. Adjustment to the focusing is accomplished by the inner
lens, a flexible structure that can be deformed by the action of the ciliary
muscles. As these muscles contract, the lens flattens to bring the object
into a sharp focus.

In both systems, the irisis used to control how much of the lens is exposed to
light, and therefore the brightness of the image projected onto the imaging
sensor. The iris of the eye is formed from opaque muscle tissue that can be
contracted to make the pupil (the light opening) larger. The iris in a camera
is a mechanical assembly that performs the same function.
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The parameters in optical systems interact in many unexpected ways. For
example, consider how the amount of available light and the sensitivity of
the light sensor affects the sharpness of the acquired image. This is
because the iris diameter and the exposure time are adjusted to transfer the
proper amount of light from the scene being viewed to the image sensor. If
more than enough light is available, the diameter of the iris can be reduced,
resulting in a greater depth-of-field (the range of distance from the camera
where an object remains in focus). A greater depth-of-field provides a
sharper image when objects are at various distances. |n addition, an
abundance of light allows the exposure time to be reduced, resulting in less
blur from camera shaking and object motion. Optical systems are full of
these kinds of trade-offs.

An adjustable iris is necessary in both the camera and eye because the range
of light intensities in the environment is much larger than can be directly
handled by the light sensors. For example, the difference in light intensities
between sunlight and moonlight is about one-million. Adding to this that
reflectance can vary between 1% and 99%, results in a light intensity range of
almost one-hundred million.

The dynamic range of an electronic camerais typically 300 to 1000, defined
as the largest signal that can be measured, divided by the inherent noise of the
device. Put another way, the maximum signal produced is 1 volt, and the rms
noise in the dark is about 1 millivolt. Typical camera lenses have an iris that
change the area of the light opening by a factor of about 300. This resultsin
atypica electronic camera having a dynamic range of a few hundred thousand.
Clearly, the same camera and lens assembly used in bright sunlight will be
useless on a dark night.

In comparison, the eye operates over a dynamic range that nearly covers the
large environmental variations. Surprisingly, the irisis not the main way that
this tremendous dynamic range is achieved. From dark to light, the area of the
pupil only changes by a factor of about 20. The light detecting nerve cells
gradually adjust their sensitivity to handle the remaining dynamic range. For
instance, it takes several minutes for your eyes to adjust to the low light after
walking into a dark movie theater.

One way that DSP can improve images is by reducing the dynamic range an
observer is required to view. That is, we do not want very light and very
dark areas in the same image. A reflection image is formed from two
image signals: the two-dimensional pattern of how the scene is illuminated,
multiplied by the two-dimensional pattern of reflectance in the scene. The
pattern of reflectance has a dynamic range of less than 100, because all
ordinary materials reflect between 1% and 99% of the incident light. This
is where most of the image information is contained, such as where objects
are located in the scene and what their surface characteristics are. In
comparison, the illumination signal depends on the light sources around the
objects, but not on the objects themselves. The illumination signal can have
a dynamic range of millions, although 10 to 100 is more typical within a
single image. The illumination signal carries little interesting information,
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FIGURE 23-3

Diagram of an electronic camera. Focusing is
achieved by moving the lenstoward or away
from the imaging sensor. The amount of
light reaching the sensor is controlled by the
iris, a mechanical device that changes the
effective diameter of the lens. The most
common imaging sensor in present day
camerasisthe CCD, atwo-dimensional array
of light sensitive elements.

FIGURE 23-4

Diagram of the human eye. The eyeisa
liquid filled sphere about 3 cm in diameter,
enclosed by a tough outer case called the
sclera. Focusing is mainly provided by the
cornea, a fixed lens on the front of the eye.
Thefocusisadjusted by contracting muscles
attached to a flexible lens within the eye.
The amount of light entering the eye is
controlled by the iris, formed from opaque
muscle tissue covering a portion of the lens.
The rear hemisphere of the eye contains the
retina, a layer of light sensitive nerve cells
that converts the image to a neural signal in
the optic nerve.
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but can degrade the final image by increasing its dynamic range. DSP can
improve this situation by suppressing the illumination signal, allowing the
reflectance signal to dominate the image. The next chapter presents an approach
for implementing this algorithm.

The light sensitive surface that covers the rear of the eye is called the r etina.
As shown in Fig. 23-5, the retina can be divided into three main layers of
specialized nerve cells: one for converting light into neural signals, one for
image processing, and one for transferring information to the optic nerve
leading to the brain. In nearly all animals, these layers are seemingly
backward. That is, the light sensitive cells are in last layer, requiring light to
pass through the other layers before being detected.

There are two types of cells that detect light: rods and cones, named for their
physical appearance under the microscope. The rods are specialized in
operating with very little light, such as under the nighttime sky. Vision appears
very noisy in near darkness, that is, the image appears to be filled with a
continually changing grainy pattern. This results from the image signal being
very weak, and is not a limitation of the eye. There is so little light entering
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the eye, the random detection of individual photons can be seen. Thisis called
statistical noise, and is encountered in al low-light imaging, such as military
night vision systems. Chapter 25 will revisit this topic. Since rods cannot
detect color, low-light vision isin black and white.

The cone receptors are specialized in distinguishing color, but can only operate
when a reasonable amount of light is present. There are three types of cones
in the eye: red sensitive, green sensitive, and blue sensitive. This results from
their containing different photopigments, chemicals that absorbs different
wavelengths (colors) of light. Figure 23-6 shows the wavelengths of light that
trigger each of these three receptors. Thisis called RGB encoding, and is
how color information leaves the eye through the optic nerve. The human
perception of color is made more complicated by neural processing in the lower
levels of the brain. The RGB encoding is converted into another encoding
scheme, where colors are classified as. red or green, blue or yellow, and light
or dark.

RGB encoding is an important limitation of human vision; the wavelengths that
exist in the environment are lumped into only three broad categories. In
comparison, specialized cameras can separate the optical spectrum into
hundreds or thousands of individual colors. For example, these might be used
to classify cells as cancerous or healthy, understand the physics of a distant
star, or see camouflaged soldiers hiding in a forest. Why is the eye so limited
in detecting color? Apparently, all humans need for survival is to find a red
apple, among the green leaves, silhouetted against the blue sky.

Rods and cones are roughly 3 um wide, and are closely packed over the entire
3 cm by 3 cm surface of the retina. This results in the retina being composed
of an array of roughly 10,000 x 10,000 = 100 million receptors. In
comparison, the optic nerve only has about one-million nerve fibers that
connect to these cells.  On the average, each optic nerve fiber is connected to
roughly 100 light receptors through the connecting layer. In addition to
consolidating information, the connecting layer enhances the image by
sharpening edges and suppressing the illumination component of the scene.
This biological image processing will be discussed in the next chapter.

Directly in the center of the retinais a small region called the fovea (Latin for
pit), which is used for high resolution vision (see Fig. 23-4). The fovea is
different from the remainder of the retinain several respects. First, the optic
nerve and interconnecting layers are pushed to the side of the fovea, allowing
the receptors to be more directly exposed to the incoming light. This resultsin
the fovea appearing as a small depression in the retina. Second, only cones are
located in the fovea, and they are more tightly packed that in the remainder of
the retina. This absence of rods in the fovea explains why night vision is often
better when looking to the side of an object, rather than directly at it. Third,
each optic nerve fiber is influenced by only a few cones, proving good
localization ability. The fovea is surprisingly small. At normal reading
distance, the fovea only sees about a 1 mm diameter area, less than the size of
asingle letter! The resolution is equivalent to about a 20x20 grid of pixels
within this region.
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optic nerve
to brain

The human retina. The retina contains three principle layers: (1) the rod and cone light receptors, (2) an
intermediate layer for data reduction and image processing, and (3) the optic nervefibersthat lead to the brain.
The structure of these layers is seemingly backward, requiring light to pass through the other layers before
reaching the light receptors.

FIGURE 23-6

Human vision overcomes the small size of the fovea by jerky eye movements
called saccades. These abrupt motions allow the high resolution fovea to
rapidly scan the field of vision for pertinent information. In addition, saccades
present the rods and cones with a continually changing pattern of light. This
is important because of the natural ability of the retina to adapt to changing
levels of light intensity. In fact, if the eye is forced to remain fixed on the
same scene, detail and color begin to fade in a few seconds.

The most common image sensor used in electronic cameras is the charge
coupled device (CCD). The CCD is an integrated circuit that replaced most
vacuum tube cameras in the 1980s, just as transistors replaced vacuum tube
amplifiers twenty years before. The heart of the CCD is a thin wafer of
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Spectral response of the eye. Thethreetypes
of cones in the human eye respond to
different sections of the optical spectrum,
roughly corresponding to red, green, and
blue. Combinations of these three form all
colorsthat humans can perceive. The cones
do not have enough sensitivity to be used in
low-light environments, where the rods are
used to detect theimage. Thisiswhy colors
aredifficult to perceive at night.
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silicon, typically about 1 cm square. As shown by the cross-sectional view in
Fig. 23-7, the backside is coated with a thin layer of metal connected to ground
potential. The topside is covered with a thin electrical insulator, and a
repetitive pattern of electrodes. The most common type of CCD isthe three
phase readout, where every third electrode is connected together. The silicon
used is called p-type, meaning it has an excess of positive charge carriers
called holes. For this discussion, a hole can be thought of as a positively
charged particle that is free to move around in the silicon. Holes are
represented in this figure by the "+" symbol.

In (a), +10 volts is applied to one of the three phases, while the other two are
held at 0 volts. This causes the holes to move away from every third electrode,
since positive charges are repelled by a positive voltage. This forms aregion
under these electrodes called a well, a shortened version of the physics term:
potential well.

Each well in the CCD is a very efficient light sensor. As shown in (b), a
single photon of light striking the silicon converts its energy into the formation
of two charged particles, one electron, and one hole. The hole moves away,
leaving the electron stuck in the well, held by the positive voltage on the
electrode. Electrons in this illustration are represented by the "-" symbol.
During the integration period, the pattern of light striking the CCD is
transferred into a pattern of charge within the CCD wells. Dimmer light
sources require longer integration periods. For example, the integration period
for standard television is 1/60th of a second, while astrophotography can
accumulate light for many hours.

Readout of the electronic image is quite clever; the accumulated electrons in
each well are pushed to the output amplifier. As shown in (c), a positive
voltage is placed on two of the phase lines. This results in each well expanding
to the right. As shown in (d), the next step is to remove the voltage from the
first phase, causing the original wells to collapse. This leaves the accumulated
electrons in one well to the right of where they started. By repeating this
pulsing sequence among the three phase lines, the accumulated electrons are
pushed to the right until they reach a charge sensitive amplifier. Thisisa
fancy name for a capacitor followed by a unity gain buffer. As the electrons
are pushed from the last well, they flow onto the capacitor where they produce
a voltage. To achieve high sensitivity, the capacitors are made extremely
small, usually less than 1 pF. This capacitor and amplifier are an integral part
of the CCD, and are made on the same piece of silicon. The signal leaving the
CCD is a sequence of voltage levels proportional to the amount of light that has
fallen on sequential wells.

Figure 23-8 shows how the two-dimensional image is read from the CCD.
After the integration period, the charge accumulated in each well is moved up
the column, one row at atime. For example, all the wellsin row 15 are first
moved into row 14, then row 13, then row 12, etc. Each time the rows are
moved up, all the wells in row number 1 are transferred into the horizontal
register. This is a group of specialized CCD wells that rapidly move the
charge in a horizontal direction to the charge sensitive amplifier.
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FIGURE 23-7

Operation of the charge coupled device (CCD). Asshown in this cross-sectional view, athin sheet of p-typesiliconis
covered with aninsulating layer and an array of electrodes. The electrodes are connected in groups of three, allowing
three separate voltagesto be applied: $1, ¢2, and $3. When apositive voltageis applied to an electrode, the holes (i.e.,
the positive charge carriersindicated by the"+") are pushed away. Thisresultsin an area depleted of holes, called awell.
Incoming light generates holes and electrons, resulting in an accumulation of electrons confined to each well (indicated
by the "-"). By manipulating the three electrode voltages, the electrons in each well can be moved to the edge of the
silicon where a charge sensitive amplifier converts the charge into a voltage.
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FIGURE 23-8

Architecture of the CCD. Theimaging wells of the CCD are arranged in columns. During readout, the charge
from each well is moved up the column into a horizontal register. The horizontal register isthen readout into
the charge sensitive preamplifier.

Notice that this architecture converts a two-dimensional array into a serial data
stream in a particular sequence. The first pixel to be read is at the top-left
corner of the image. The readout then proceeds from left-to-right on the first
line, and then continues from left-to-right on subsequent lines. Thisis called
row major order, and is amost always followed when a two-dimensional
array (image) is converted to sequential data.

Television Video Signals

Although over 50 years old, the standard television signal is still one of the
most common way to transmit an image. Figure 23-9 shows how the
television signal appears on an oscilloscope. This is called composite
video, meaning that there are vertical and horizontal synchronization (sync)
pulses mixed with the actual picture information. These pulses are used in
the television receiver to synchronize the vertical and horizontal deflection
circuits to match the video being displayed. Each second of standard video
contains 30 complete images, commonly called frames. A video engineer
would say that each frame contains 525 lines, the television jargon for what
programmers call rows. This number is alittle deceptive because only 480
to 486 of these lines contain video information; the remaining 39 to 45 lines
are reserved for sync pulses to keep the television's circuits synchronized
with the video signal.

Standard television uses an interlaced format to reduce flicker in the
displayed image. This means that all the odd lines of each frame are
transmitted first, followed by the even lines. The group of odd lines is called
the odd field, and the group of even lines is called the even field. Since
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Composite video. The NTSC video signal consists of 30 complete frames (images) per second, with each
frame containing 480 to 486 lines of video. Each frameisbroken into two fields, one containing the odd lines
and the other containing the even lines. Each field starts with a group of vertical sync pulses, followed by
successive lines of video information separated by horizontal sync pulses. (The horizontal axis of thisfigure
isnot drawn to scale).

each frame consists of two fields, the video signal transmits 60 fields per
second. Each field starts with a complex series of vertical sync pulses
lasting 1.3 milliseconds. Thisis followed by either the even or odd lines of
video. Each line lasts for 63.5 microseconds, including a 10.2 microsecond
horizontal sync pulse, separating one line from the next. Within each line,
the analog voltage corresponds to the grayscale of the image, with brighter
values being in the direction away from the sync pulses. This places the
sync pulses beyond the black range. In video jargon, the sync pulses are
said to be blacker than black.

The hardware used for analog-to-digital conversion of video signalsis called
aframe grabber. Thisis usualy in the form of an electronics card that plugs
into a computer, and connects to a camera through a coaxial cable. Upon
command from software, the frame grabber waits for the beginning of the next
fram