
 T
he historic role of IIR (infinite-impulse-re-
sponse)-filter-design software is to translate a set
of frequency-domain design specifications into a
transfer function that is based on recognized IIR-
filter models. You can use any of dozens of com-
mercially available software packages to synthe-

size a transfer function from a set of user specifications. The
SPT (signal-processing toolbox) and FDATool (filter-design
and -analysis tool) in The Mathworks’ (www.mathworks.
com) Matlab, for example, contain many of the objects you
need to synthesize an IIR-transfer function. These functions
include Matlab’s Butterworth, Chebyshev I, Chebyshev II, el-
liptic, Burg-AR (autoregressive), covariance-AR, and Yule-

Walker-AR functions. You use the first four deterministic fil-
ter classes to synthesize a classic fixed-coefficient filter based
on user-specified passband-critical frequencies and maximum
attenuation and stopband-critical frequencies and minimum
attenuation. The last three design methods synthesize AR,
fixed-coefficient, feedback-only IIR filters in terms of mea-
sured or desired input/output spectral responses.

The choice of which filter model to use is generally not the
issue. Often, the designer specifies or selects the IIR type from
a restricted list. For performance and cost reasons, designers
generally prefer fixed-point approaches over floating-point
instantiations. Unfortunately, fixed-point designs are highly
susceptible to a range of degrading finite-word-length effects,

BY MICHAEL CHRISTENSEN • UNIVERSITY OF FLORIDA,
AND FRED J TAYLOR • UNIVERSITY OF FLORIDA AND THE ATHENA GROUP INC

Fixed-point-IIR-filter
challenges
IIR FILTERS CAN MEET HIGHLY SELECTIVE MAGNITUDE-
FREQUENCY-RESPONSE SPECIFICATIONS WITH A LOW-ORDER
APPROACH. AS SUCH, AN IIR IS OFTEN THE TECHNOLOGY
OF CHOICE IN REALIZING FREQUENCY-SELECTIVE TONE DETEC-
TORS, NARROWBAND SPECTRAL FILTERS, NOISE REJECTERS,
AND DIGITAL CONTROLLERS. THEIR DESIGN, HOWEVER, ENTAILS
SOME UNIQUE CHALLENGES.

INPUT

FIXED-POINT
EXTERNAL GAIN

F�0

EXTERNAL-GAIN
FIXED-POINT SS FILTER

F�0

TO
FLOAT

y(n)�Cx(n)�Du(n)
x(n�1)�Ax(n)�Bu(n)

F

1 F

F F

V

F

K

1

1

FLOATING-POINT
EXTERNAL GAIN

F�0

FIXED-POINT
UNITY GAIN

F�0

FLOATING-POINT
UNITY GAIN

F�0

OUT

TO
FLOAT

F

V

OUT

ABS

�u�

ABSVAL

�u�

SQUARE
ROOT

SQRT

SQUARE
ROOT1

SQRT

OUTPUT VARIANCE
EXTERNAL GAIN

F�0

QSQUAREDOVER12
F�0

OUTPUT VARIANCE
UNITY GAIN

F�0

RUNNING
VARIANCE

RUNNING
VARIANCE

NOISE-
POWER

GAIN

NPG �K� �K�

�K�

�K�

SQUARE
ROOT2

SQRT

LOG
(ANS)

ln
1

NONUNITY-
COMPUTED
PRECISION

3

PREDICTED
PRECISION

2

UNITY-
COMPUTED
PRECISION

LOG()

DIVIDE
BY

LOG2

DIVIDE
BY

LOG2

DIVIDE
BY

LOG2

ln

MATH
FUNCTION1

ln

EXTERNAL-GAIN
FLOATING-POINT SS FILTER

F�0

y(n)�Cx(n)�Du(n)
x(n�1)�Ax(n)�Bu(n)

UNITY-GAIN
FLOATING-POINT SS FILTER

F�0

y(n)�Cx(n)�Du(n)
x(n�1)�Ax(n)�Bu(n)

UNITY-GAIN
FIXED-POINT SS FILTER

F�0

y(n)�Cx(n)�Du(n)
x(n�1)�Ax(n)�Bu(n)

_

+

_

+

Figure 1 A Simulink simulator tests the behavior of a 16-bit filter for fractional precisions ranging from F�[0,15].

NOVEMBER 9, 2006 | EDN 111

edn061109ms4214_id 111edn061109ms4214_id 111 10/26/2006 1:10:24 PM10/26/2006 1:10:24 PM

in some cases rendering a design unusable.
As a result, you must take extreme care to
ensure that the final outcome meets the
target design requirements.

FINITE-WORD-LENGTH EFFECTS
The goal of a fixed-point IIR-filter design

is to maximize filter performance and
minimize finite-word-length effects, which
include register overflow and arithmetic-
round-off errors. The more egregious error
is register overflow, which occurs whenever
a filter’s dynamic-range requirements ex-
ceed the dynamic-range limitations of a
fixed-point register. Arithmetic-round-off
errors result from imprecise arithmetic,
which in turn reduces precision. Register
overflow can cause a system to behave
in an unpredictable, nonlinear manner,
producing potentially large runtime errors.
In the absence of register overflow, a system
behaves linearly but possibly with degraded
precision due to the accumulation of vari-
ous arithmetic errors accumulating within
a filter. A filter-design engineer should be
able to quantify and control the effects of
arithmetic errors to ensure that the final
outcome meets some minimum precision
requirement. This process begins with
making design choices. Although the filter
type may be non-negotiable, the choice of
architecture normally is negotiable. The choice of
architecture is a critical factor in controlling finite-
word-length effects.

REGISTER OVERFLOW
The most serious finite-word-length effect is

register overflow. Register overflow introduces
large nonlinear distortions into a system’s output,
often rendering a filter useless. A filter designer
must eliminate or control the effects of runtime
register overflow. Some standard techniques are
available to mitigate this problem. One effective
means of controlling fixed-point-overflow errors is
to perform all arithmetic using a two’s complement
arithmetic unit. Two’s complement possesses the
important modulo(2n) property that ensures that
the sum of a string of two’s complement numbers
is a valid two’s complement outcome, ensuring that
the accumulator does not overflow. Alternatively,
designers can use a saturating-arithmetic approach.
A saturating-arithmetic unit “clamps” a register’s
contents at the register’s extreme values if overflow
occurs. Even with saturating arithmetic, the effect
of register overflow creates serious errors.

Scaling the input to a lower level can eliminate regis-
ter-overflow conditions. Experimentally determining the
required scale factor can be a tenuous approach. Furthermore,

the test inputs may not represent an input-worst-case event
and therefore may underestimate scaling needs. Scaling re-
duces the precision of the input, which in turn reduces output
precision. Another means of eliminating runtime overflow is
to use extended-precision arithmetic and registers. Extended-

Figure 2 When the simulation is complete, you can use the fixed-point GUI to exam-
ine runtime-saturation effects.

Figure 3 With the simulated output, you can partition the results.

112 EDN | NOVEMBER 9, 2006

(continued on pg 120)

edn061109ms4214_id 112edn061109ms4214_id 112 10/26/2006 1:10:24 PM10/26/2006 1:10:24 PM

You defi ne the physical implementation of a digital fi lter
in terms of its architecture. “Architecture” refers to how
a designer builds a fi lter using primitive building-block
elements, such as shift registers, memory, multipliers,
and adders. Many DSP-system engineers are generally
aware of only one or two possible fi lter architectures.
However, many architectural choices exist, each carrying
relative advantages and disadvantages. Some architec-
tural choices are application-specifi c, and others have
general-purpose implications. Some provide better con-
trol of fi nite-word-length effects, and others emphasize
reduced complexity and increased speed. The more com-
mon architectures are Direct I, Direct II, cascade, parallel,
normal cascade, normal parallel, lattice/ladder, wave, and
biquadratic.

The two most popular architectural choices are Direct II
and cascade. However, all can implement a given trans-
fer function, H(z). If you build an IIR (infi nite-impulse-
response) fi lter using fl oating-point arithmetic, then all
architectures would have identical input/output behavior.
This behavior is not the case when you implement de-
signs using fi xed-point arithmetic. Fixed-point arithmetic
gives rise to fi nite-word-length effects that can degrade
a fi lter’s performance. The choice of architecture, in turn,
strongly infl uences the severity of these errors. It is there-
fore essential that fi xed-point-IIR-fi lter developers know
how to exercise control over the design environment and
minimize the impact of these errors on the outcome.

An IIR fi lter’s transfer function, H(z), which you produce
using The Mathworks’ Matlab or another commercial
software tool, quantifi es only an IIR fi lter’s input/out-
put behavior. A transfer function, unfortunately, does
not quantify the fi lter’s internal workings in which errors
emerge and accumulate. The fi lter’s internal structure, or

architecture, includes state variables. You use the state-
variable model to audit the information entering, exiting,
and residing within a digital fi lter. Equation A illustrates a
state-variable model of a single-input, single-output, Nth-
order IIR (Figure A). The state-model is x[k�1]�Ax[k�1]
�x[k]+bu[k], and the output model is [yk]�cT x[k]�du[k],
where x[k] is the N-dimension state vector of state vari-
ables, u[k] is the input, and y[k] is the output. The other
elements of the state-variable model are an N�N feed-
back matrix A, a 1�N input vector b, an N�1 output vec-
tor c, and a scalar-direct input/output-path gain d. The
fi lter’s N registers store x[k] and x[k�1] on the next clock
cycle. Because state-variable models model the internal
behavior of digital fi lters and this information is critical in
managing register overfl ow, understanding the relation-
ship between the state model and a given architecture is
important.

The Direct II architecture is a common IIR form. It is
based on interpreting an Nth-order IIR transfer function,
H(z), as the following equation shows:

114 EDN | NOVEMBER 9, 2006

b1=1

d0=�2

�

� � � �

� � � �

T T T T
u[k]

y[k]

x1[k�1]

x1[k] x2[k] x3[k] x4[k]

x2[k�1] x3[k�1]

a12=0

c4=�1c3=�16c2=2c1=21

a11=10 a13=10 a14=1

x4[k�1]

10 0 10 1
1 0 0 0
0 1 0 0
0 0 1 0

1
0
0
0

21
2

�16
�1

A= ; b= ; c= ; d0=�2.

IIR-FILTER ARCHITECTURES

��b

STATE
MODEL

OUTPUT
MODEL

T cT

A

d

y[k]x[k�1] x[k]

Figure A Understanding the relationship between the state
model and a given architecture is important.

Figure B This Direct II state four-tuple S�[A,b,c,d] induces this architecture.

edn061109ms4214_id 114edn061109ms4214_id 114 10/26/2006 1:10:29 PM10/26/2006 1:10:29 PM

The following equation yields the Direct II state-variable
four-tuple (A, b, c, d):

The (i,j) element of A defi nes the path gain between state
xj[k] and xi[k�1], bi is the path gain between the input
and xi[k�1], ci is the path gain between xi[k] and the out-
put, and d0 is the gain of the direct input/output path.
One caveat you should know about is that Matlab state-
variable programs make state assignments in a reverse
order to what you generally fi nd in signal-processing lit-
erature and textbooks.

You can convert the transfer function H(z) into a Direct
II form using the Matlab functions TF2SS or ZP2SS. The
function TF2SS converts a transfer function, H(z)�KN(z)/

D(z), into a Direct II state form using the syntax [A,B,C,D]
�TF2SS(NUM,DEN). Similarly, the function ZP2SS con-
verts transfer function H(z) having zeros (Z), poles (P),
and input-scale factor (K), into a Direct II state form using
the syntax [A,B,C,D]�ZP2SS(Z,P,K).

Consider the fourth-order transfer function H(z):

which you factor using Equation A. From this factoriza-
tion, you can construct a database for a Direct II fi lter.
Specifi cally, [A,B,C,D]�tf2ss([�2 1 2 4 1],[1 10 0 �10
�1]).
A��10 0 10 1 1 0 0 0 0 1 0 0 0 0 10 (Direct II).
B�1 0 0 0.
C�21 2 �16 �1.
D��2.
Figure B graphically interprets this Direct II state four-
tuple S�[A,b,c,d] and its induced architecture.

Figure C shows another important IIR form, the cas-
cade architecture. You use the basic cascade architecture
to implement a transfer function of the form:

Assume that Hi(z) is a fi rst- or second-order subfi lter,
which you defi ne in terms of real coeffi cients. You defi ne
fi rst-order subfi lters in terms of real poles and zeros of
H(z). You defi ne second-order subfi lters by combining

SECTION #1 [A1, b1, c1, d1] SECTION #Q [AQ, bQ, cQ, dQ]
yQ,[k]�y[k]y1,[k] wQ,[k]u[k] w[k]

K

b1=1 b1=1

d0=1 d0=�2

� �

� � � �

� � � �

T T T T
u[k]

y[k]

x1[k�1]

x1[k] x2[k] x1[k] x2[k]

x2[k�1] x3[k�1]

a12=1

c2=3c1=23c2=2c1=21

a11=0 a11=10 a12=�1

x2[k�1]x1[k�1] x3[k�1]

 0 1
 1 0

1
0

1
2A1= ; b1= ; c1= ; d0=1.

 �10 �1
 1 0

1
0

23
3A2= ; b1= ; c1= ; d0=�2.

Figure C You use the basic cascade architecture to implement a
transfer function.

Figure D This cascade filter comprises two second-order Direct II sections.

H(z)=K
N(z)
D(z)

=
b +b z +0 1

1� b z

a +a z + a z

(b b b

N
N

0 1
1

N
N

1 0
1

0

�

� �

�� �
= +

+ +
K

b
a

a a z b a aN N0

0

1 0 0/) (/))z

K
b
a

z c zN

�

� �

� �

�

N

0 1
1

N
N

1
1 N

0 1
1

a +a z + +a z

c

a +a z + +

⎛

⎝
⎜

⎞

⎠
⎟

= +
+ +0

0 aa zN
N�

⎛

⎝
⎜

⎞

⎠
⎟

= + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

K d C z
D z0

1
()

()
.

�� �

=A

a aN1 22 1
1 0 0

1 0 0
0

� �

�a aN N

 0

 0
 0 1 0

1
0

0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

; .b

=()H z
��

� �

�
�

� � � �

� � � �

� �

2 2 4

1 10 0 10

2
21 2

1

1 3

1

+ + + +
+ +

= + +

z z z z

z z z z
z z

2 3 4

2 4

2 116

1 10 0 101 3
z z

z z z z

� �

� � � �

�

� �

3 4

2 4+ +
,

(B)

(C)

1
H z K H zi

i

Q
=

=
∏() ().. (D)

(A)

NOVEMBER 9, 2006 | EDN 115

edn061109ms4214_id 115edn061109ms4214_id 115 10/26/2006 1:10:30 PM10/26/2006 1:10:30 PM

116 EDN | NOVEMBER 9, 2006

complex poles and zeros and their complex conjugate
pairs to form fi lter sections having only real coeffi cients.
You can defi ne the basic fi rst- and second-order sections
in terms of biquadratic or Direct II structures. The princi-
pal difference is that the Direct II architecture possesses
a state-variable description, whereas the biquad does
not. Direct II implementations have been increasingly
gaining favor because of this feature.

As a general rule, fi lters pair zeros with the closest
poles. This proximity-pairing strategy generally results in
fi lter design that more uniformly distributes the subfi lter
gains across all fi lter sections, which is a desirable trait.
Other pairing strategies can result in a few subsystems
having excessively large dynamic-range requirements
and others having small gains. This disparity creates a
precision-allocation problem that can compromise over-
all system performance.

Matlab contains a collection of programs that relate to
cascade-fi lter implementation. The function tf2sos con-
verts digital-fi lter-transfer-function data to a set of sec-
ond-order sections having the form:

where the ith row of the array sos specifi es the coeffi -
cients of the ith subfi lter:

The Matlab program zp2sos converts a transfer

function, H(z), in terms of its zeros, poles, and gain, into
an Lx6 sos array. The program sos2ss maps second-or-
der-fi lter sections into a Direct II state-space form, and
the program sos2tf converts a collection of second-order-
fi lter sections into an overall transfer function. If a fi lter
section is fi rst-order, the coeffi cients b2i and a2i are zero.
Finally, the program sos2zp converts second-order-fi lter
sections into a zero-pole-gain form.

Consider a transfer function H(z)=H1(z)H2(z), where:

You can reduce the subfi lters H1(z) and H2(z) to two
cascaded, second-order Direct II sections using Matlab.
The Matlab representation of the fi lter sections is sos�[1
1 1 1 0 �1; �2 3 1 1 1 0 1]; {H1(z), H2(z)}. From this data-
base, sos2tf can map the defi nition of the second-order
section to the original transfer function as follows:
sos�[1 1 1 1 0 �1; �2 3 1 1 1 0 1].
[b,a]�sos2tf(sos).
b��2 1 2 4 1.
a�1 10 0 �10 �1.
The vectors b and a are the coeffi cients of transfer func-
tion H(z). Finally, using sos2ss, you can convert the indi-
vidual second-order sections into a Direct II state-vari-
able form:
sos1�[1 1 1 1 0 �1]; [A,B,C,D]�sos2ss(sos1).

Figure E Measuring a Direct II filter’s impulse response at a shift register (a) and its L1-norm estimate (b) shows a worst-case gain of 2.25.

(continued on pg 118)

2� ��
()H z

z z
=

+ + +2 2 41 zz z

z z z z
H z H z

H z
z z

� �

� � � �

� �
� �

3 4

2 4

2

+
+ +

=

=
+ +

1 10 0 10
1

1

1 3 1 2

1

1

() ();

()
�� �

�
�

�

� �

�

� �

� �

z

z z

z
and

H z
z z

z z

2

1

2

2

1

1

1
2

1
2 3

1 10
2

2

= +
+

= + +
+ +

= +

2

2

2

;

()
33 3

1 10

1

1
z z

z z

� �

� �

+
+ +

2

2 .

i
i

i
H z K

B z
A z

K= =()
()
()

b +b0i 11i
1

2i
2

0i 1i
1

2i
2

z +b z

a +a z +a z

� �

� �
. (F)

sos

b b b a a
b b b a a

b bL

=

01 11 21 11 21

02 12 22 12 22

0 1

1
1

LL L L Lb a a2 1 21

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, (E)

(G)

edn061109ms4214_id 116edn061109ms4214_id 116 10/26/2006 1:10:32 PM10/26/2006 1:10:32 PM

118 EDN | NOVEMBER 9, 2006

A�0 1 1 0.
B�1 0.
C�1 2.
D�1 1.
sos2�[�2 3 1 1 10 1].
[A,B,C,D]�sos2ss(sos2).
A��10 �1 1 0.
B�1 0.
C�23 3.
D��2.
Figure D shows the resultant cascade fi lter, comprising
two second-order Direct II sections.

Using The MathWorks’ FDATool (fi lter-design and-anal-
ysis tool), you can implement an eighth-order Chebyshev
II IIR lowpass fi lter using a sampling frequency of 100
kHz, an attenuation frequency of 20 kHz, and a stopband
attenuation of 30 dB. Using Matlab’s architectural tools,

you can implement the designed fi lter as a Direct II and
cascade fi lter. First, compute the n-state-determined im-
pulse-response vector and its L1 norm, ||hi[k]||1. Figure E
shows the production of ||h1[k]||1 for the Direct II case.
You then use the state-determined impulse response to
compute the worst-case gain of 2.25. Referring to Figure
2, note that all the shift registers are chained together.
Therefore, the dynamic-range requirement of the fi rst
shift register is identical to that of all the other shift reg-
isters. This situation indicates that the Direct II shift regis-
ters need an additional log2(2.25)�1.17 bits.

Figure F shows the L1 norms of the state-deter-
mined impulse responses of the cascade IIR, which
you can analyze and use to study the IIR. The largest L1
norm is in the fourth subfi lter and is approximately 1.8
(log2(1.8)�0.85 bits), which is less than the maximal L1
norm of the Direct II fi lter model.

Figure F You can analyze the L1 norms of the state-determined impulse responses of the cascade IIR to study the Direct II IIR in
Stage 1 (a), Stage 2 (b), Stage 3 (c), and Stage 4 (d).

(continued from pg 116)

edn061109ms4214_id 118edn061109ms4214_id 118 10/26/2006 1:10:36 PM10/26/2006 1:10:36 PM

precision registers provide additional head room that allows
the filter to store and preserve a system’s states without
introducing saturation errors.

The ideal method of overcoming the threat of runtime
overflow is to determine the worst-case filter gain, which you
measure at each register or state location. Mathematically, the
worst-case gain measured at the ith shift-register location is:

where hi[m] is the impulse response at the output of the ith
shift register—that is, the ith state location. GMAX:i is the
L1 norm of the ith state register. The ith state norm that
Equation 1 defines states that I integer bits of precision are
necessary to ensure that the ith state does not produce a run-
time-overflow error. You can generate the impulse response,
hI[m], using a state-variable model and general-purpose digital
computer. You define Equation 1 in terms of a vector-valued
impulse response of the form h[m�1]�Ah[m]�b�[m], where
the ith element of the n-dimensional vector, h[m], is hi[m]. A
potential problem, however, arises when you note that Equa-
tion 1 requires an infinite sum, which is unrealistic. Another
approach, however, is available.

You can assume that the system under study is asymptotically
stable. This assumption ensures that the impulse-response
vector, h[m], essentially converges to zero by a finite-sample
index m�M. Because M is finite, you can compute the im-

pulse response at each shift register and attendant L1-norm
GMAX:i in finite time. You can use Matlab’s norm function to
compute the L1 norms, which you can then use to establish
the dynamic-range requirements of the state registers. The
following example demonstrates this concept.

The source of serious arithmetic error that an IIR produces
involves fixed-point MAC (multiply-accumulate) or SAXPY
(S�AX�Y) calls. You can round data at a number of loca-
tions within a MAC stream. It has become commonplace
to employ extended-precision accumulators that can accept
full-precision products from the multiplier and sequentially
accumulate the products with sufficient head room to pre-
clude runtime-accumulator overflow. Once you have summed
the full-precision products, you can then round them to the
filter’s basic word length—16 bits, for example. Each round-
ing introduces an error having a mean value of zero and a

variance of �2�Q2/12, where Q is the quantization-step size
and has a value of Q�2�F and where F denotes the fractional
precision you assign to a data word. For example, in a Texas
Instruments’ (www.ti.com) Q.15 environment, F�15 bits.

Using this model, you can theoretically predict the effect
of arithmetic-rounding errors by computing the NPG (noise-
power gain) between a noise-injection point and the output.
The noise-injection points are normally the state registers (see
sidebar “IIR-filter architectures” on pg 114). In this paradigm,
assume that the input to the ith state register contains mi
round-off-error sources, in which each source has a mean of
zero and a variance of �2�Q2/12. IIR filters are so treacherous
because these errors recirculate through the filter, building
up noise power over time and reducing the output SNR. You
can conceptually compute the noise-power gain by tracing
the signal-power path between a state-shift register and the
output. By defining NPGi,i�[1,n] to be the noise-power gain
associated with the ith state, the output-noise error variance
then becomes:

You can determine the filter’s noise gain in bits using
NG2�log2(�NPG). NG2 is an estimate of the statistical deg-
radation of the IIR filter’s output in bits due to accumulated
round-off errors in the filter. In practice, you can estimate the
noise-power gain using fixed-point simulation.

You can use The MathWorks’ Simulink to perform an
end-to-end fixed simulation of an eighth-order Chebyshev
II IIR lowpass filter. The basic filter data’s word length is 16
bits, and the filter comes with a full-precision multiplier and
an extended-precision accumulator. A Simulink simulator
tests the behavior of a 16-bit filter for fractional precisions
ranging from F�[0,15] (Figure 1). The key architectural
choices defining the simulation are a data-word length,
N, of 16 bits; a fractional precision of F�[0:15] bits; an
input-data format of x[k]�[N:F] bits (N:F denotes an N-bit
word with F fractional bits of precision); an output-data
format of y[k]�[N:F] bits; a coefficient-data format of ck�[N:
F] bits; multiplier datapaths of 16�16�32 bits; Direct II
accumulator datapaths of 32�(32�NDII)�32�NDII bits
(NDII�log2(2.25)	1.17 bits; (sidebar Figure E, pg 116) and
cascade-accumulator datapaths of 32�(32�NC)�32�NC
bits (NC�log2(1.8)	0.8 bits) (sidebar Figure F, pg 118).
[N:F] denotes an N-bit word with F fractional bits of preci-
sion. Assume that an extended-precision accumulator has
additional head room. For the Direct II filter, the head-room
requirement is NDII�2�log2(2.25) bits. For a cascade filter,
the head-room requirement is NC�1�log2(1.8) bits. Upon
accumulation, assume that data rounds to a signed 16-bit
word having F fractional bits of precision, where F�[0,15] bits.
Simulink also hosts a plethora of features to support design
analysis. Fixed-point filters, for example, offer a measure for
the dynamic-range needs for internal calculations. The com-
mand sfrac(N,I) creates an N-bit structure having a signed
fractional form with I integer bits. To illustrate, you can model

120 EDN | NOVEMBER 9, 2006

(continued from pg 112)

Q
m NPG

Q
NPGi i

k

n

12 12
2

2

1

2
σ = =

=
∑ (). (2)

G h mMAX i i
m

I2
0

: ,= [] ≤
=

∞
∑ (1)

SIMULINK HOSTS A PLETHORA
OF FEATURES TO SUPPORT DESIGN
ANALYSIS. FIXED-POINT FILTERS,
FOR EXAMPLE, OFFER A MEASURE
FOR THE DYNAMIC-RANGE NEEDS
FOR INTERNAL CALCULATIONS.

edn061109ms4214_id 120edn061109ms4214_id 120 10/26/2006 1:10:38 PM10/26/2006 1:10:38 PM

122 EDN | NOVEMBER 9, 2006

a 16-bit system with no fractional preci-
sion using the structure sfrac(16,15).
When the simulation is complete, you
can use the fixed-point GUI to examine
runtime-saturation effects (Figure
2). The input-forcing function in the
example is a 2048-sample, unit-bound,
uniformly distributed random signal
that emulates a worst-case input.

Figure 3 shows the simulated output,
from which you can partition the results
as those having too little precision due
to having too few fractional bits of
accuracy; those in the linear regime,
meaning that they have sufficient
dynamic range to inhibit runtime over-
flow and sufficient fractional precision
to eliminate traumatic round-off errors;
and those having too little dynamic
range due to having too few integer bits,
resulting in too small a dynamic range,
and ultimately resulting in a plethora of
runtime-overflow errors.

The Direct II architecture exhibits
overflow contamination beginning at
two integer bits, as the L1-norm analysis
predicts. Similarly, as the analysis
predicts, the cascade filter began ex-
hibiting register overflow at one integer
bit. Moreover, the Direct II has slightly
better statistical precision than the linear
input/output operating range, which the
analytical study predicts. In the linear
region, the analysis predicts that the
cascade architecture is about 0.3 of a bit
inferior to a Direct II. The simulation
suggests that the optimal cascade filter
should carry a [16:14] format, resulting in
a solution having statistically about 11.5
fractional bits of precision. The simula-
tion also suggests that the Direct II filter
should carry a [16:13] format, resulting
in a solution having statistically about
11 fractional bits of precision.

The system always used a worst-case
or nearly worst-case input to mimic
the most severe conditions. Analyz-
ing the system using an impulse or
sinusoidal test signal produces different,
erroneous, and ultimately inconclusive
results. You can predict the optimal
operational point of a fixed-point IIR
using simulation to produce results that
are consistent with classic analytical
techniques. You can exploit the exis-
tence of predefined blocks by invoking

the Simulink library browser from the
Launch Pad in Matlab.EDN

AUTH OR S’ B I OG RAPH I E S
Michael Christensen is a research assistant
at the University of Florida (Gainesville).
As a doctoral student, he focuses his
research on digital filters and machine
learning. He holds bachelor’s and master’s
degrees in engineering from the University
of Florida.

Fred J Taylor is a professor at the Uni-
versity of Florida (Gainesville), where he
researches and teaches DSP theory and
practice. He holds a bachelor’s degree in
electrical engineering from the Milwaukee
School of Engineering (WI) and master’s
and doctorate degrees from the University
of Colorado—Boulder.

www.dataq.com/edns

Featuring ready-to-run WINDAQ®

software for applications in:
Heavy Industry
Field maintenance and
troubleshooting
Design qualifi cation
Process monitoring
Stand-alone data logging

Starter Kits from $24.95

✔

✔

✔

✔

✔

DATAQ, the DATAQ logo, and WINDAQ are registered trademarks of DATAQ
Instruments, Inc. All rights reserved. Copyright © 2005 DATAQ Instruments, Inc.

Data
Acquisition

for any
Application
and Budget R E FE R E N CE S

 Cavicchi, Thomas J, Digital Signal
Processing, ISBN: 0-471-12472-9,
Wiley, 1999.

 Chassaing, Rulph, Digital Signal
Processing and Applications with the
C6713 and C6416 DSK, ISBN: 0-
471-70406-7, Wiley, 2005.

 Mitra, Sanjit K, Digital Signal
Processing, Third Edition, ISBN:
0073048372, McGraw Hill, 2006.

 Ifeachor, Emmanuel C and Barrie
W Jervis, Digital Signal Processing: A
Practical Approach, Second Edition,
Addison Wesley, 2001.

 Oppenheim, Alan V, and Ronald W
Schafer, Digital Signal Processing,
ISBN: 0-132-14635-5, Prentice Hall,
1974.

 Oppenheim, Alan V, and Ronald W
Schafer, Digital Signal Processing,
Second Edition, ISBN: 0-824-71357-5,
Prentice Hall, 1999.

 Taylor, Fred J, Digital Filter Design
Handbook, Marcel Dekker, New York,
1983.

 Taylor, Fred J, and Thanos Stouraitis,
Digital Filter Design Using the IBP PC,
ISBN: 0-824-77733-6, Marcel Dekker,
1987.

 Taylor, Fred J, and Jon Mellott,
Hands-On Digital Signal Processing,
ISBN: 0-078-52930-1, McGraw Hill,
1998.

1

2

3

4

5

6

7

8

9

edn061109ms4214_id.indd 122edn061109ms4214_id.indd 122 10/26/2006 2:29:07 PM10/26/2006 2:29:07 PM

