
 T
he historic role of IIR (infinite-impulse-re-
sponse)-filter-design software is to translate a set 
of frequency-domain design specifications into a 
transfer function that is based on recognized IIR-
filter models. You can use any of dozens of com-
mercially available software packages to synthe-

size a transfer function from a set of user specifications. The 
SPT (signal-processing toolbox) and FDATool (filter-design 
and -analysis tool) in The Mathworks’ (www.mathworks.
com) Matlab, for example, contain many of the objects you 
need to synthesize an IIR-transfer function. These functions 
include Matlab’s Butterworth, Chebyshev I, Chebyshev II, el-
liptic, Burg-AR (autoregressive), covariance-AR, and Yule-

Walker-AR functions. You use the first four deterministic fil-
ter classes to synthesize a classic fixed-coefficient filter based 
on user-specified passband-critical frequencies and maximum 
attenuation and stopband-critical frequencies and minimum 
attenuation. The last three design methods synthesize AR, 
fixed-coefficient, feedback-only IIR filters in terms of mea-
sured or desired input/output spectral responses.

The choice of which filter model to use is generally not the 
issue. Often, the designer specifies or selects the IIR type from 
a restricted list. For performance and cost reasons, designers 
generally prefer fixed-point approaches over floating-point 
instantiations. Unfortunately, fixed-point designs are highly 
susceptible to a range of degrading finite-word-length effects, 
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IIR FILTERS CAN MEET HIGHLY SELECTIVE MAGNITUDE-
FREQUENCY-RESPONSE SPECIFICATIONS WITH A LOW-ORDER 
APPROACH. AS SUCH, AN IIR IS OFTEN THE TECHNOLOGY 
OF CHOICE IN REALIZING FREQUENCY-SELECTIVE TONE DETEC-
TORS, NARROWBAND SPECTRAL FILTERS, NOISE REJECTERS, 
AND DIGITAL CONTROLLERS. THEIR DESIGN, HOWEVER, ENTAILS 
SOME UNIQUE CHALLENGES.
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Figure 1 A Simulink simulator tests the behavior of a 16-bit filter for fractional precisions ranging from F�[0,15].
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in some cases rendering a design unusable. 
As a result, you must take extreme care to 
ensure that the final outcome meets the 
target design requirements.

FINITE-WORD-LENGTH EFFECTS
The goal of a fixed-point IIR-filter design 

is to maximize filter performance and 
minimize finite-word-length effects, which 
include register overflow and arithmetic-
round-off errors. The more egregious error 
is register overflow, which occurs whenever 
a filter’s dynamic-range requirements ex-
ceed the dynamic-range limitations of a 
fixed-point register. Arithmetic-round-off 
errors result from imprecise arithmetic, 
which in turn reduces precision. Register 
overflow can cause a system to behave 
in an unpredictable, nonlinear manner, 
producing potentially large runtime errors. 
In the absence of register overflow, a system 
behaves linearly but possibly with degraded 
precision due to the accumulation of vari-
ous arithmetic errors accumulating within 
a filter. A filter-design engineer should be 
able to quantify and control the effects of 
arithmetic errors to ensure that the final 
outcome meets some minimum precision 
requirement. This process begins with 
making design choices. Although the filter 
type may be non-negotiable, the choice of 
architecture normally is negotiable. The choice of 
architecture is a critical factor in controlling finite-
word-length effects.

REGISTER OVERFLOW
The most serious finite-word-length effect is 

register overflow. Register overflow introduces 
large nonlinear distortions into a system’s output, 
often rendering a filter useless. A filter designer 
must eliminate or control the effects of runtime 
register overflow. Some standard techniques are 
available to mitigate this problem. One effective 
means of controlling fixed-point-overflow errors is 
to perform all arithmetic using a two’s complement 
arithmetic unit. Two’s complement possesses the 
important modulo(2n) property that ensures that 
the sum of a string of two’s complement numbers 
is a valid two’s complement outcome, ensuring that 
the accumulator does not overflow. Alternatively, 
designers can use a saturating-arithmetic approach. 
A saturating-arithmetic unit “clamps” a register’s 
contents at the register’s extreme values if overflow 
occurs. Even with saturating arithmetic, the effect 
of register overflow creates serious errors.

Scaling the input to a lower level can eliminate regis-
ter-overflow conditions. Experimentally determining the 
required scale factor can be a tenuous approach. Furthermore, 

the test inputs may not represent an input-worst-case event 
and therefore may underestimate scaling needs. Scaling re-
duces the precision of the input, which in turn reduces output 
precision. Another means of eliminating runtime overflow is 
to use extended-precision arithmetic and registers. Extended-

Figure 2 When the simulation is complete, you can use the fixed-point GUI to exam-
ine runtime-saturation effects.

Figure 3 With the simulated output, you can partition the results.
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You defi ne the physical implementation of a digital fi lter 
in terms of its architecture. “Architecture” refers to how 
a designer builds a fi lter using primitive building-block 
elements, such as shift registers, memory, multipliers, 
and adders. Many DSP-system engineers are generally 
aware of only one or two possible fi lter architectures. 
However, many architectural choices exist, each carrying 
relative advantages and disadvantages. Some architec-
tural choices are application-specifi c, and others have 
general-purpose implications. Some provide better con-
trol of fi nite-word-length effects, and others emphasize 
reduced complexity and increased speed. The more com-
mon architectures are Direct I, Direct II, cascade, parallel, 
normal cascade, normal parallel, lattice/ladder, wave, and 
biquadratic.

The two most popular architectural choices are Direct II 
and cascade. However, all can implement a given trans-
fer function, H(z). If you build an IIR (infi nite-impulse-
response) fi lter using fl oating-point arithmetic, then all 
architectures would have identical input/output behavior. 
This behavior is not the case when you implement de-
signs using fi xed-point arithmetic. Fixed-point arithmetic 
gives rise to fi nite-word-length effects that can degrade 
a fi lter’s performance. The choice of architecture, in turn, 
strongly infl uences the severity of these errors. It is there-
fore essential that fi xed-point-IIR-fi lter developers know 
how to exercise control over the design environment and 
minimize the impact of these errors on the outcome.

An IIR fi lter’s transfer function, H(z), which you produce 
using The Mathworks’ Matlab or another commercial 
software tool, quantifi es only an IIR fi lter’s input/out-
put behavior. A transfer function, unfortunately, does 
not quantify the fi lter’s internal workings in which errors 
emerge and accumulate. The fi lter’s internal structure, or 

architecture, includes state variables. You use the state-
variable model to audit the information entering, exiting, 
and residing within a digital fi lter. Equation A illustrates a 
state-variable model of a single-input, single-output, Nth-
order IIR (Figure A). The state-model is x[k�1]�Ax[k�1]
�x[k]+bu[k], and the output model is [yk]�cT x[k]�du[k], 
where x[k] is the N-dimension state vector of state vari-
ables, u[k] is the input, and y[k] is the output. The other 
elements of the state-variable model are an N�N feed-
back matrix A, a 1�N input vector b, an N�1 output vec-
tor c, and a scalar-direct input/output-path gain d. The 
fi lter’s N registers store x[k] and x[k�1] on the next clock 
cycle. Because state-variable models model the internal 
behavior of digital fi lters and this information is critical in 
managing register overfl ow, understanding the relation-
ship between the state model and a given architecture is 
important.

The Direct II architecture is a common IIR form. It is 
based on interpreting an Nth-order IIR transfer function, 
H(z), as the following equation shows:
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Figure A Understanding the relationship between the state 
model and a given architecture is important.

Figure B This Direct II state four-tuple S�[A,b,c,d] induces this architecture.
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The following equation yields the Direct II state-variable 
four-tuple (A, b, c, d):

The (i,j) element of A defi nes the path gain between state 
xj[k] and xi[k�1], bi is the path gain between the input 
and xi[k�1], ci is the path gain between xi[k] and the out-
put, and d0 is the gain of the direct input/output path. 
One caveat you should know about is that Matlab state-
variable programs make state assignments in a reverse 
order to what you generally fi nd in signal-processing lit-
erature and textbooks. 

You can convert the transfer function H(z) into a Direct 
II form using the Matlab functions TF2SS or ZP2SS. The 
function TF2SS converts a transfer function, H(z)�KN(z)/

D(z), into a Direct II state form using the syntax [A,B,C,D] 
�TF2SS(NUM,DEN). Similarly, the function ZP2SS con-
verts transfer function H(z) having zeros (Z), poles (P), 
and input-scale factor (K), into a Direct II state form using 
the syntax [A,B,C,D]�ZP2SS(Z,P,K).

Consider the fourth-order transfer function H(z):

which you factor using Equation A. From this factoriza-
tion, you can construct a database for a Direct II fi lter. 
Specifi cally, [A,B,C,D]�tf2ss([�2 1 2 4 1],[1 10 0 �10 
�1]).
A��10 0 10 1 1 0 0 0 0 1 0 0 0 0 10 (Direct II).
B�1 0 0 0.
C�21 2 �16 �1.
D��2.
Figure B graphically interprets this Direct II state four-
tuple S�[A,b,c,d] and its induced architecture.

Figure C shows another important IIR form, the cas-
cade architecture. You use the basic cascade architecture 
to implement a transfer function of the form:

Assume that Hi(z) is a fi rst- or second-order subfi lter, 
which you defi ne in terms of real coeffi cients. You defi ne 
fi rst-order subfi lters in terms of real poles and zeros of 
H(z). You defi ne second-order subfi lters by combining 
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Figure C You use the basic cascade architecture to implement a 
transfer function.

Figure D This cascade filter comprises two second-order Direct II sections.
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complex poles and zeros and their complex conjugate 
pairs to form fi lter sections having only real coeffi cients. 
You can defi ne the basic fi rst- and second-order sections 
in terms of biquadratic or Direct II structures. The princi-
pal difference is that the Direct II architecture possesses 
a state-variable description, whereas the biquad does 
not. Direct II implementations have been increasingly 
gaining favor because of this feature.

As a general rule, fi lters pair zeros with the closest 
poles. This proximity-pairing strategy generally results in 
fi lter design that more uniformly distributes the subfi lter 
gains across all fi lter sections, which is a desirable trait. 
Other pairing strategies can result in a few subsystems 
having excessively large dynamic-range requirements 
and others having small gains. This disparity creates a 
precision-allocation problem that can compromise over-
all system performance.

Matlab contains a collection of programs that relate to 
cascade-fi lter implementation. The function tf2sos con-
verts digital-fi lter-transfer-function data to a set of sec-
ond-order sections having the form:

where the ith row of the array sos specifi es the coeffi -
cients of the ith subfi lter:

The Matlab program zp2sos converts a transfer 

function, H(z), in terms of its zeros, poles, and gain, into 
an Lx6 sos array. The program sos2ss maps second-or-
der-fi lter sections into a Direct II state-space form, and 
the program sos2tf converts a collection of second-order-
fi lter sections into an overall transfer function. If a fi lter 
section is fi rst-order, the coeffi cients b2i and a2i are zero. 
Finally, the program sos2zp converts second-order-fi lter 
sections into a zero-pole-gain form.

Consider a transfer function H(z)=H1(z)H2(z), where:

You can reduce the subfi lters H1(z) and H2(z) to two 
cascaded, second-order Direct II sections using Matlab. 
The Matlab representation of the fi lter sections is sos�[1 
1 1 1 0 �1; �2 3 1 1 1 0 1]; {H1(z), H2(z)}. From this data-
base, sos2tf can map the defi nition of the second-order 
section to the original transfer function as follows:
sos�[1 1 1 1 0 �1; �2 3 1 1 1 0 1].
[b,a]�sos2tf(sos).
b��2 1 2 4 1.
a�1 10 0 �10 �1.
The vectors b and a are the coeffi cients of transfer func-
tion H(z). Finally, using sos2ss, you can convert the indi-
vidual second-order sections into a Direct II state-vari-
able form:
sos1�[1 1 1 1 0 �1]; [A,B,C,D]�sos2ss(sos1).

Figure E Measuring a Direct II filter’s impulse response at a shift register (a) and its L1-norm estimate (b) shows a worst-case gain of 2.25.
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A�0 1 1 0.
B�1 0.
C�1 2.
D�1 1.
sos2�[�2 3 1 1 10 1].
[A,B,C,D]�sos2ss(sos2).
A��10 �1 1 0.
B�1 0.
C�23 3.
D��2.
Figure D shows the resultant cascade fi lter, comprising 
two second-order Direct II sections.

Using The MathWorks’ FDATool (fi lter-design and-anal-
ysis tool), you can implement an eighth-order Chebyshev 
II IIR lowpass fi lter using a sampling frequency of 100 
kHz, an attenuation frequency of 20 kHz, and a stopband 
attenuation of 30 dB. Using Matlab’s architectural tools, 

you can implement the designed fi lter as a Direct II and 
cascade fi lter. First, compute the n-state-determined im-
pulse-response vector and its L1 norm, ||hi[k]||1. Figure E 
shows the production of ||h1[k]||1 for the Direct II case. 
You then use the state-determined impulse response to 
compute the worst-case gain of 2.25. Referring to Figure 
2, note that all the shift registers are chained together. 
Therefore, the dynamic-range requirement of the fi rst 
shift register is identical to that of all the other shift reg-
isters. This situation indicates that the Direct II shift regis-
ters need an additional log2(2.25)�1.17 bits.

Figure F shows the L1 norms of the state-deter-
mined impulse responses of the cascade IIR, which 
you can analyze and use to study the IIR. The largest L1 
norm is in the fourth subfi lter and is approximately 1.8 
(log2(1.8)�0.85 bits), which is less than the maximal L1 
norm of the Direct II fi lter model.

Figure F You can analyze the L1 norms of the state-determined impulse responses of the cascade IIR to study the Direct II IIR in 
Stage 1 (a), Stage 2 (b), Stage 3 (c), and Stage 4 (d).

(continued from pg 116)
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precision registers provide additional head room that allows 
the filter to store and preserve a system’s states without 
introducing saturation errors.

The ideal method of overcoming the threat of runtime 
overflow is to determine the worst-case filter gain, which you 
measure at each register or state location. Mathematically, the 
worst-case gain measured at the ith shift-register location is:

where hi[m] is the impulse response at the output of the ith 
shift register—that is, the ith state location. GMAX:i is the 
L1 norm of the ith state register. The ith state norm that 
Equation 1 defines states that I integer bits of precision are 
necessary to ensure that the ith state does not produce a run-
time-overflow error. You can generate the impulse response, 
hI[m], using a state-variable model and general-purpose digital 
computer. You define Equation 1 in terms of a vector-valued 
impulse response of the form h[m�1]�Ah[m]�b�[m], where 
the ith element of the n-dimensional vector, h[m], is hi[m]. A 
potential problem, however, arises when you note that Equa-
tion 1 requires an infinite sum, which is unrealistic. Another 
approach, however, is available.

You can assume that the system under study is asymptotically 
stable. This assumption ensures that the impulse-response 
vector, h[m], essentially converges to zero by a finite-sample 
index m�M. Because M is finite, you can compute the im-

pulse response at each shift register and attendant L1-norm 
GMAX:i in finite time. You can use Matlab’s norm function to 
compute the L1 norms, which you can then use to establish 
the dynamic-range requirements of the state registers. The 
following example demonstrates this concept.

The source of serious arithmetic error that an IIR produces 
involves fixed-point MAC (multiply-accumulate) or SAXPY 
(S�AX�Y) calls. You can round data at a number of loca-
tions within a MAC stream. It has become commonplace 
to employ extended-precision accumulators that can accept 
full-precision products from the multiplier and sequentially 
accumulate the products with sufficient head room to pre-
clude runtime-accumulator overflow. Once you have summed 
the full-precision products, you can then round them to the 
filter’s basic word length—16 bits, for example. Each round-
ing introduces an error having a mean value of zero and a 

variance of �2�Q2/12, where Q is the quantization-step size 
and has a value of Q�2�F and where F denotes the fractional 
precision you assign to a data word. For example, in a Texas 
Instruments’ (www.ti.com) Q.15 environment, F�15 bits.

Using this model, you can theoretically predict the effect 
of arithmetic-rounding errors by computing the NPG (noise-
power gain) between a noise-injection point and the output. 
The noise-injection points are normally the state registers (see 
sidebar “IIR-filter architectures” on pg 114). In this paradigm, 
assume that the input to the ith state register contains mi 
round-off-error sources, in which each source has a mean of 
zero and a variance of �2�Q2/12. IIR filters are so treacherous 
because these errors recirculate through the filter, building 
up noise power over time and reducing the output SNR. You 
can conceptually compute the noise-power gain by tracing 
the signal-power path between a state-shift register and the 
output. By defining NPGi,i�[1,n] to be the noise-power gain 
associated with the ith state, the output-noise error variance 
then becomes:

You can determine the filter’s noise gain in bits using 
NG2�log2(�NPG). NG2 is an estimate of the statistical deg-
radation of the IIR filter’s output in bits due to accumulated 
round-off errors in the filter. In practice, you can estimate the 
noise-power gain using fixed-point simulation.

You can use The MathWorks’ Simulink to perform an 
end-to-end fixed simulation of an eighth-order Chebyshev 
II IIR lowpass filter. The basic filter data’s word length is 16 
bits, and the filter comes with a full-precision multiplier and 
an extended-precision accumulator. A Simulink simulator 
tests the behavior of a 16-bit filter for fractional precisions 
ranging from F�[0,15] (Figure 1). The key architectural 
choices defining the simulation are a data-word length, 
N, of 16 bits; a fractional precision of F�[0:15] bits; an 
input-data format of x[k]�[N:F] bits (N:F denotes an N-bit 
word with F fractional bits of precision); an output-data 
format of y[k]�[N:F] bits; a coefficient-data format of ck�[N:
F] bits; multiplier datapaths of 16�16�32 bits; Direct II 
accumulator datapaths of 32�(32�NDII)�32�NDII bits 
(NDII�log2(2.25)	1.17 bits; (sidebar Figure E, pg 116) and 
cascade-accumulator datapaths of 32�(32�NC)�32�NC 
bits (NC�log2(1.8)	0.8 bits) (sidebar Figure F, pg 118). 
[N:F] denotes an N-bit word with F fractional bits of preci-
sion. Assume that an extended-precision accumulator has 
additional head room. For the Direct II filter, the head-room 
requirement is NDII�2�log2(2.25) bits. For a cascade filter, 
the head-room requirement is NC�1�log2(1.8) bits. Upon 
accumulation, assume that data rounds to a signed 16-bit 
word having F fractional bits of precision, where F�[0,15] bits. 
Simulink also hosts a plethora of features to support design 
analysis. Fixed-point filters, for example, offer a measure for 
the dynamic-range needs for internal calculations. The com-
mand sfrac(N,I) creates an N-bit structure having a signed 
fractional form with I integer bits. To illustrate, you can model 
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(continued from pg 112)
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a 16-bit system with no fractional preci-
sion using the structure sfrac(16,15). 
When the simulation is complete, you 
can use the fixed-point GUI to examine 
runtime-saturation effects (Figure 
2). The input-forcing function in the 
example is a 2048-sample, unit-bound, 
uniformly distributed random signal 
that emulates a worst-case input.

Figure 3 shows the simulated output, 
from which you can partition the results 
as those having too little precision due 
to having too few fractional bits of 
accuracy; those in the linear regime, 
meaning that they have sufficient 
dynamic range to inhibit runtime over-
flow and sufficient fractional precision 
to eliminate traumatic round-off errors; 
and those having too little dynamic 
range due to having too few integer bits, 
resulting in too small a dynamic range, 
and ultimately resulting in a plethora of 
runtime-overflow errors.

The Direct II architecture exhibits 
overflow contamination beginning at 
two integer bits, as the L1-norm analysis 
predicts. Similarly, as the analysis 
predicts, the cascade filter began ex-
hibiting register overflow at one integer 
bit. Moreover, the Direct II has slightly 
better statistical precision than the linear 
input/output operating range, which the 
analytical study predicts. In the linear 
region, the analysis predicts that the 
cascade architecture is about 0.3 of a bit 
inferior to a Direct II. The simulation 
suggests that the optimal cascade filter 
should carry a [16:14] format, resulting in 
a solution having statistically about 11.5 
fractional bits of precision. The simula-
tion also suggests that the Direct II filter 
should carry a [16:13] format, resulting 
in a solution having statistically about 
11 fractional bits of precision.

The system always used a worst-case 
or nearly worst-case input to mimic 
the most severe conditions. Analyz-
ing the system using an impulse or 
sinusoidal test signal produces different, 
erroneous, and ultimately inconclusive 
results. You can predict the optimal 
operational point of a fixed-point IIR 
using simulation to produce results that 
are consistent with classic analytical 
techniques. You can exploit the exis-
tence of predefined blocks by invoking 

the Simulink library browser from the 
Launch Pad in Matlab.EDN
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