
32 11-2009 elektor

Arduino + Theremin = Theremino
Using a Theremin oscillator as a proximity sensor

MICROCONTROLLERS

This tiny oscillator circuit, when coupled
with the software running on the Arduino
microcontroller board, has a huge range
of potential applications, allowing prox-
imity-based control of any other circuit
or system.
The circuit has already found use in many
installations and objects at the author’s
college. One example is where the device is
interfaced to the Max/MSP music and mul-
timedia development environment, which is
capable of producing sounds that provide a
pleasant contrast to the square waves that
the Arduino can generate directly.

What makes a theremin a
theremin?
The Elektor editorial team felt it was possible
that calling this project a ‘Theremin’ might
be a little misleading. The musical instru-
ment named after Russian inventor and
engineer Léon Theremin (born Lev Termen)
consists of two antennas, each connected
to an oscillator. One oscillator controls the
pitch of the instrument and the other the
volume. The original Theremin is a purely
analogue device, with the conversion from
the modulated high-frequency signal to
an audible frequency being performed by

a superhet circuit: the oscillator output is
mixed with a fixed frequency generated by
a further oscillator, arranged so that the dif-
ference frequency is in the audible range.
Our circuit has just one oscillator, never-
theless designed around the same princi-
ple as the Theremin. The oscillator is con-
nected to an antenna, and the oscillator’s

frequency changes when a human hand
(or other electrically conductive object)
is brought near to the antenna. The addi-
tional capacitance of the hand affects the
frequency of the resonant circuit in the
oscillator (Figure 1). It seems reasonable
to call this circuit a ‘Theremin oscillator’.
As in the original Theremin, we convert
the modulated high-frequency signal into
the audible range; but rather than using a
superhet converter, we do the job in soft-
ware on the Arduino board. Our ‘There-
mino’ therefore replicates just the pitch
control part of the original instrument. It
would be possible to build a second Ther-
emin, suitably modified to provide a vol-
ume control, to emulate the analogue
Theremin fully.

LC oscillator using a 74HC00
The circuit shown in Figure 2 consists of
an amplifier, made to oscillate by coupling
its output signal back to its input. At the
input to the amplifier is a parallel resonant
circuit, made from a coil and a capacitor,
which determines the frequency of the
oscillator. Any extra parallel capacitance
due to the connected antenna will affect
this frequency.

By Martin Nawrath (Academy of Media Arts, Cologne, Germany)

The Theremin is one of the very first electronic

musical instruments, dating back to the 1920s. It is

played by the musician bringing his hands close to its

two antennas. The oscillator at the heart of the Theremin

remains an interesting circuit in itself, and in this project we

connect such an oscillator to an Arduino microcontroller board.

The processor can detect the shifts in the HF signal from the

oscillator and convert them into an audible sound. However, this

is by no means the only possibility: we can also use the circuit to

convert hand and body movements into control signals for other

musical instruments, servos and computers.

Oscillator
4.1MHz ± ∆f

081163 - 11

Figure 1. The parallel capacitance of a
human hand near to the oscillator affects

its frequency.

33elektor 11-2009

The amplifier is made from two NAND gates
from a 74HC00 connected in series. Each is
equipped with a resistor (R1 and R2) to pro-
vide negative feedback, which causes the
gates to behave as amplifiers. C3 provides
feedback from the output to the resonant
circuit at the input consisting of L1 and C1.
C4 couples the signal on the resonant circuit
into the input of the amplifier. The resonant
circuit is also connected to the antenna. The
theoretical resonant frequency of the LC
combination is 4.11 MHz.

The oscillator is followed by the two remain-
ing gates of the 74HC00, used to square up
its output waveform into a TTL-compatible
signal. This signal is suitable for connection
to a digital input on the Arduino board.

Components and construction
Capacitor C1 in the LC network should be
a ceramic NP0 type (such as Farnell order
code 9411720) for best temperature stabil-
ity. L1 should have a high Q factor. A suita-
ble type is the Fastron SMCC-100K-02, which
has a Q factor of 65; it is difficult to do better
than that, even with a hand-wound coil.

The circuit can be built, like the author’s
prototype, on a small piece of prototyping
board. To reduce drift with temperature, it
is a good idea to mount the board in a small
plastic enclosure. The software running on
the Arduino board also has features to help
compensate for temperature drift and com-
ponent tolerances.

The antenna that is connected to the LC cir-
cuit should be no longer than about one
metre (3 feet). A loop of 1.5 mm copper
wire (or, for greater mechanical strength,
steel wire) works well.

With the antenna operating at 4 MHz metal
objects and cables near to it (including USB
cables) will also act as parasitic antennas. It is
therefore important to keep the unit fixed in
place to avoid unwanted frequency drift.

Arduino software
For our tests in the Elektor lab we used an
Arduino Diecimila board [1] with software
downloaded from the author’s project web-
site. In principle any Arduino board could be

used, including the ‘Elektorino’ design that
we published in February 2009 [2]. The oscil-
lator circuit of Figure 2 is provided with +5 V
and ground from the Arduino board and the
oscillator output (fout) is connected to dig-

ital pin 5 (PD5, pin 11 on the ATmega168 [3]).
This pin has the extra function of acting as
an input to hardware counter/timer Timer1
in the ATmega168. To detect the frequency
shifts of the oscillator, an accurate fre-

1

2
3

IC1.A

&
4

5
6

IC1.B

&
12

13
11

IC1.D

&
9

10
8

IC1.C

&

R1

100k

R2

100k

C4

10p

C3

10p

C1

150p
NP0

L1

10 H

IC1

14

7

C2

100n

ANT

IC1 = 74HC00N

+5V

GND1

GND2

F_OUT

081163 - 12

Figure 2. Circuit of the LC oscillator using the 74HC00. To increase the sensitivity of the
circuit to the proximity of a human hand, an antenna, made from a length of wire, is

connected to the LC network.

Figure 3. The oscillator can be built on a small piece of prototyping board.

34 11-2009 elektor

quency counter is realised in the Arduino
firmware using Timer1 as a counter and
Timer2 as a timebase. When suitably con-
figured by the software, the counter incre-
ments by one for each pulse on the input
pin, typically over four million times per sec-
ond. Timer2 provides a gate time of exactly
1/10 s (100 ms). With an input frequency of
4.1 MHz Timer1 will increment 410 000 times
during the gate period, and the frequency
can be measured to a resolution of 10 Hz.
This precision is required in order to detect
the relatively small frequency shifts caused
by the Theremin effect.

Timer1 is only a 16-bit counter and so it will
overflow several times in each gate period.
The overflows are counted and combined
with the counter value to produce a final
result at the end of the gate period. All the
timing work is handled by an interrupt func-

tion, called every two milliseconds under
control of Timer2 (see Listing 1).

At the end of the gate period a global flag
variable is set. This signals to the main code
(see Listing 2) that a new result is ready.
Since we are only interested in relative
changes in the input frequency and not its
absolute value, we subtract the first meas-
ured frequency after power-up from each
reading. If after a preset number of read-
ings the frequency shift is less than a certain
threshold value, an automatic calibration is
performed: this compensates for the effect
of long-term oscillator drift. The two par-
ameters (number of readings and threshold
value) can be adjusted to suit a particular
application. The calculated frequency shift
value (variable ‘tune’ in the listing) can be
used as a starting point for your own appli-
cation ideas.

The frequency shifts and calibration values
are output on the serial port for further
processing or for viewing using a terminal
program on a PC.

A rudimentary DDS tone generator function
is implemented in software to produce an
audible frequency on port B. The signal can
be heard by connecting a piezo transducer
or small loudspeaker to digital pin 8 (PB0,
or pin 14 of the ATmega168) via a 1 kΩ series
resistor. You can see and hear the circuit in
action in a video on the author’s project
website [4].

(081163-I)

Listing 1. Frequency is measured using Timer1 as a counter and Timer2 to measure the gate time.

//**
void f_meter_start() {
 f_ready=0; // reset period measure flag
 i_tics=0; // reset interrupt counter
 sbi (GTCCR,PSRASY); // reset prescaler counting
 TCNT2=0; // timer2=0
 TCNT1=0; // Counter1 = 0
 cbi (TIMSK0,TOIE0); // disable Timer0 again // millis and delay
 sbi (TIMSK2,OCIE2A); // enable Timer2 Interrupt
 TCCR1B = TCCR1B | 7; // Counter Clock source = pin T1 , start counting now
}

//**
// Timer2 Interrupt Service is invoked by hardware Timer2 every 2ms = 500 Hz
// 16Mhz / 256 / 125 / 500 Hz
// gate time generation for freq. measurement takes place here:

ISR(TIMER2_COMPA_vect) {

 if (i_tics==50) { // multiple 2ms = gate time = 100 ms
 // end of gate time, measurement ready
 TCCR1B = TCCR1B & ~7; // Gate Off / Counter T1 stopped
 cbi (TIMSK2,OCIE2A); // disable Timer2 Interrupt
 sbi (TIMSK0,TOIE0); // enable Timer0 again // milli-s and delay
 f_ready=1; // set global flag for end count period

 // calculate now frequency value
 freq_in=0x10000 * mlt; // multiply number of overflows by 65536
 freq_in += TCNT1; // add counter1 value
 mlt=0;

 }
 i_tics++; // count number of interrupt events
 if (TIFR1 & 1) { // if Timer/Counter 1 overflow flag
 mlt++; // count number of Counter1 overflows
 sbi(TIFR1,TOV1); // clear Timer/Counter 1 overflow flag
 }

}

35elektor 11-2009

Internet Links

[1] www.arduino.cc/en/Main/
ArduinoBoardDiecimila

[2] www.atmel.com/dyn/resources/
prod_documents/doc2545.pdf

[3] www.elektor.com/080931

[4] http://interface.khm.de/index.php/lab/
experiments/theremin-as-a-capacitive-
sensing-device/

Listing 2. Excerpt from the main loop. The variable ‘tune’ contains the frequency shift as produced by the
proximity sensor. Automatic calibration compensates for the effect of long-term oscillator drift.

void loop()
{
 cnt++;

 f_meter_start();

 tune=tune+1;
 while (f_ready==0) { // wait for period end (100ms) using interrupt
 PORTB=((dds+=tune) >> 15); // kind of DDS tone generator: connect speaker to portb.0 = Arduino pin8
 }
 tune = freq_in-freq_zero;
 // use the tune value here for your own purposes like control of servos, midi etc.

 // startup
 if (cnt==10) {
 freq_zero=freq_in;
 freq_cal=freq_in;
 cal_max=0;
 Serial.print(“** START **”);
 }

 // automatic calibration
 if (cnt % 20 == 0) { // try automatic calibration after n cycles
 Serial.print(“*”);
 if (cal_max <= 2) {
 freq_zero=freq_in;
 Serial.print(“ calibration”);
 }
 freq_cal=freq_in;
 cal_max=0;
 Serial.println(“”);
 }
 cal = freq_in-freq_cal;
 if (cal < 0) cal*=-1; // absolute value
 if (cal > cal_max) cal_max=cal;
}

Figure 4. Arduino board with oscillator
circuit and piezo transducer.

