
ELCOM Example Calculations For

Transistorized Amplifiers.

PROBLEM 2:

To determine primary and secondary Impedances of Driver Transformer (T_1) to match transistor Input Impedance (R_{1n}) . Also to determine required Driving Power (P_{1n}) .

For Class B Output Stage

(See Fig. 1 and footnotes)

R_{in} $\approx 4 h_{i}$, (assuming R_E is negligible) P_{in} $\approx \frac{4 h_{i}$, Po_{pp} $\frac{(h_{i})^{2}Rcc}{(h_{i})^{2}Rcc}$

(See Fig. 2 and footnotes) $R_{i,b} \approx h_{i,c} \text{ (assuming } R_E \text{ is negligible)}$ $P_{i,n} \approx \frac{h_{i,c} \text{ PoA}}{(h_{i,c})^2} \frac{R_L}{R_L}$

PROBLEM 1:

To determine required primary impedance of Output Transformer T2 and Transistor Dissipation.

Example 1

GIVEN:

VCE = 12 volts ≈ Vcc (Supply Voltage) P. = 5 watts to Speaker Load

SOLUTION:

Assume Transformer Efficiency of 80%. Then Transistor Output power required $=\frac{5}{8}=6$ watts.

- a. Using nomograph, draw straight line from Output Power of 6 watts on Scale B through Collector Volts VCE of 12 on Scale D. Extend line and read Primary Impedance Rcc of 48 ohms C.T. for Class B operation on Scale E, or R₁ of 12 ohms for Class A on Scale F.
- b. Read Transistor Dissipation of 1.5 watts each for Class B operation on Scale A, or 12 watts for Class A on Scale C. Verify that Transistor Dissipation ratings are not exceeded. c. Suitable Class B Output Transformer would be Elcom TO648C which has a rating of 48 ohms C.T. to 4/8/16 at 10 watts.

Example 2

GIVEN:

Assume G.E. 2N656A's or RCA 2N1481's in Class B Output Stage of Example 1, Fig. 1. Transistor Output Power Po $_{\rm pp}=6$ watts. VcE = 12 Volts. Primary Impedance R_{cc} of $T_2 = 48\Omega$ C.T.

SOLUTION:

a. Transistor handbook ratings of 2N656 are: h_{fe} ≈ 40 and

b. $R_{in} \approx 4h_{i*} = 4x200 = 800\Omega$ C.T. Secondary Impedance of T_1 . **c.** $P_{in} \approx \frac{4h_{i*} Po_{pp}}{(h_{r*})^2 Rcc} = \frac{4x200x6}{(40)^2x48} = 62.5$ mw.

Allowing for typical transformer efficiency of 75%, Input Power to T_1 should be $\frac{62.5}{.75}=83.3$ mw.

- d. Use nomograph to determine primary impedance of Driver Transformer T_1 by drawing line from 83.3mw. on Scale B through 12 volts D.C. on Scale D. Read Class A primary impedance of 850Ω on Scale F.(Assuming Driver is Class A)
- e. Suitable Driver Transformer would be Elcom TI26. This transformer has a 1:1 impedance ratio whose impedance values and power handling capacity is close enough to required circuit values for proper performance.

REFERENCE INFORMATION

CLASS B FORMULAS (Assumes> 50mw. power level)

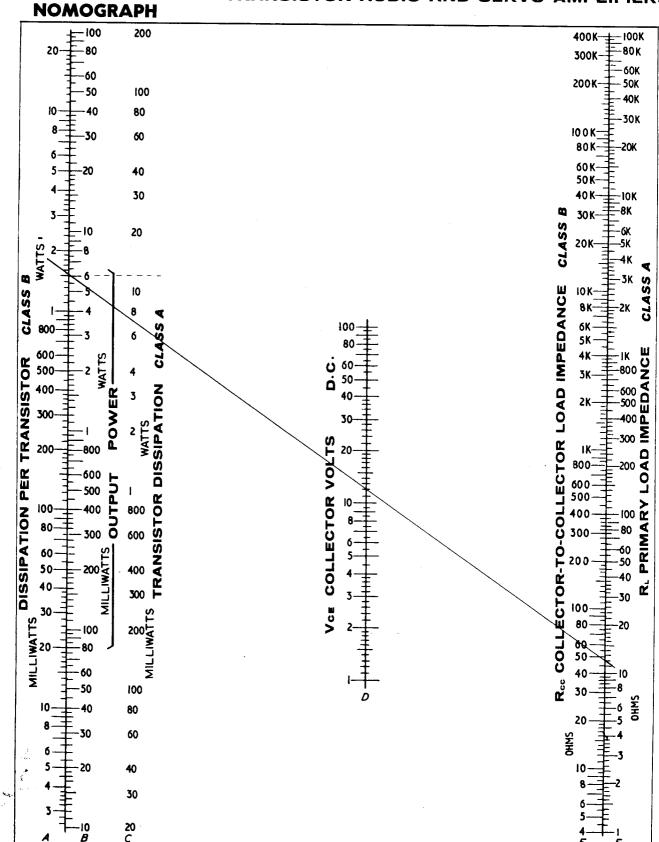
Transistor Power Output, $Po_{pp} = \frac{2V_{er}^2}{R_{ee}}$ Power Gain, $G_{eg} = \frac{(h_{fe})^2R}{4h_{ie}}$

Power In, $P_{in} = \frac{Po_{pp}}{Ge_B} = \frac{4h_{ie}Po_{pp}}{(h_{re})^2R}$ $R_{in} = 4(h_{ie} + h_{re}R_E)$ (When R_E is not negligible)

CLASS A FORMULAS (Assumes> 10mw. power level)

 $\mbox{Transistor Power Output, Po}_{\mbox{\scriptsize A}} = \ \, \frac{\mbox{\scriptsize VCE}}{2\mbox{\scriptsize R}_{\mbox{\scriptsize L}}}^{\mbox{\scriptsize 2}} \ \, \mbox{\scriptsize Power Gain, G}_{\mbox{\tiny R}_{\mbox{\scriptsize A}}} \ \, \mbox{\scriptsize \approx} \ \, \frac{(\mbox{\scriptsize h}_{\mbox{\tiny L}_{\mbox{\tiny L}}}\mbox{\scriptsize Po}_{\mbox{\tiny L}}}{\mbox{\scriptsize h}_{\mbox{\tiny L}_{\mbox{\tiny L}}}} \ \, \mbox{\scriptsize Power Gain, G}_{\mbox{\tiny R}_{\mbox{\tiny A}}} \ \, \mbox{\scriptsize \approx} \ \, \frac{(\mbox{\scriptsize h}_{\mbox{\tiny L}_{\mbox{\tiny L}}}\mbox{\scriptsize Power}}{\mbox{\scriptsize h}_{\mbox{\tiny L}_{\mbox{\tiny L}}}} \ \, \mbox{\scriptsize Power Gain, G}_{\mbox{\tiny R}_{\mbox{\tiny A}}} \ \, \mbox{\scriptsize \approx} \ \, \mbox{\scriptsize \approx} \ \, \mbox{\scriptsize \approx} \ \, \mbox{\scriptsize \approx} \ \, \mbox{\scriptsize \sim} \mbox{\scriptsize \sim} \ \, \mbox{\scriptsize \sim} \ \, \mbox{\scriptsize \sim} \ \, \mbox{\scriptsize \sim} \mbox{\scriptsize$

Power In, $P_{in} = \frac{Po_A}{(i_a)^2 R_i} = \frac{h_{i_a} Po_a}{(h_{i_a})^2 R_i}$

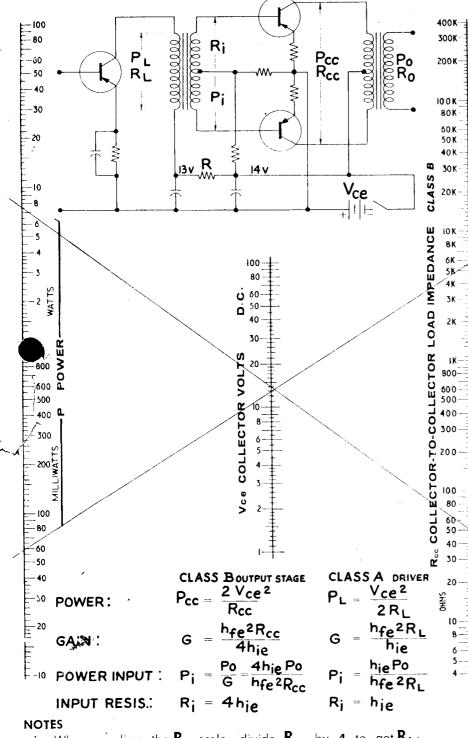

 $R_{in} = h_{ir} + h_{rr}R_{E}$ (when R_{E} is not negligible)

REFERENCES: Motorola 1960 Power Transistor Handbook pgs. 64-81. G.E. Transistor Manual 5th Edition pgs. 44-47.

TRANSISTOR
LOAD IMPEDANCE
AND DISSIPATION
NOMOGRAPH

FOR

CLASS A AND B TRANSFORMER COUPLE TRANSISTOR AUDIO AND SERVO AMPLIFIERS



TRANSFORMER TECHNICAL DATA

9

HAMMOND

ANSISTOR LOAD IMPEDANCE NOMOGRAPH ANSISTOR AUDIO AND SERVO AMPLIFIERS

- 1. When reading the R_{cc} scale, divide R_{cc} by 4 to get R_L ; when entering the R_{cc} scale with R_L , multiply R_L by 4.
- 2. Pri. load impedance of single-ended stage is $R_L = \frac{R_{cc}}{4}$.
- These formulae are approximations for convenience. For more exact relations reference should be made to suitable texts, particularly in regard to the transistor parameters, hie and hie.

FOR CLASS B TRANSFORMER - COUPLED

Example: To determine the correct driver and output transformers in the above typical circuit —

 $oldsymbol{V_{ce}}=$ 14V DC amplifier supply $oldsymbol{P_o}=$ 6 watts power output

R_o = 8 ohms output impedance

1. Assume the output transformer efficiency to be 80%, then

 $P_{cc} = \frac{6}{0.8} = 7.5$ watts.

2. On the nomograph draw a line from 7.5 watts on \mathbf{P} scale through 14 Volts on the $\mathbf{V_{ce}}$ scale to read 50 ohms on the $\mathbf{R_{cc}}$ scale. The nearest Hammond transformer would be the 147R which has a rating of 48 ohms at 10 watts.

3. The driving power required for a pair of transistors having $\mathbf{h_{fe}} = 40$, $\mathbf{h_{ie}} = 100$ is $\mathbf{P_i} = \frac{4(100)(7.5)}{40^2(48)} = 39$ mw.

Allowing for 67% efficiency, a driving power **P**_L of 59 mw should be available.

4. The secondary impedance of the driver transformer is equal to the input resistance (\mathbf{R}_{i}) of the output transistors.

 $\mathbf{R_i}$ is usually specified for Class B power transistors, but where $\mathbf{h_{ie}}$ is given, $\mathbf{R_i}$ may be found approximately from the relation $\mathbf{R_i} = 4$ $\mathbf{h_{ie}}$. Where $\mathbf{h_{ie}} = 100$, $\mathbf{R_i} = 400$ ct.

5. The primary impedance can be taken from the nomograph by drawing a line through 59 mw on the $\,^{f P}$ scale and 13 volts on the $\,^{f V}_{ce}$ scale. Being single-ended the primary impedance is

$$\frac{5600}{4} = 1400$$
 ohms.

The transformer is therefore 1400/400 ohms ct at 59 mw rating, and the Hammond type 148F would be about right. (1500/500 ohms ct)