

After the 2-way active loudspeaker circuit, give a complete electronic section circuit of one 3 -way active loudspeaker. The speaker's choice will become from you, because the particular circuit has the driving possibility all almost trade loudspeakers. The choice that made in the crossover stage, is a 3 -way crossover [Butterworth] with cut off - point frequencies 200 HZ and 3500 HZ , with slope $-12 \mathrm{~dB} /$ oct. These frequencies can change and adapted in your own speaker's choice, using the calculation types of Fig.5. Exist the possibility is used other circuit crossover, as the circuit of 3-way active crossover with slope $-\mathbf{2 4 d B} /$ oct. The circuit crossover does not exist above in main PCB, but is contact with this via the plug J2A that is applied above in the J2B. This can become if in the place of J 2 A it's placed a pinhead with 8 pin and PCB crossover put on above main PCB in form sandwich. It can however be placed in other point and with a flat cable to transport the signals and the voltages from J2A in the J2B. Power supply for $\pm 15 \mathrm{~V}$ of the crossover circuits it's found in main PCB. A point that I want to highlight is with regard to various in the calculation values precision and real values of resistors and capacitors. It's good, if the component value does not exist in standard value to select a combination that us will give value near in theoretical and simultaneously to do the same and in the other loudspeaker, in order that the divergence is same. In the drawing exist parallel combinations resistors, and somebody's from these are not used if they do not need. With the TR1-2 we adjust the level of high and mid speakers, if it needs.
$\mathrm{R} 1=47 \mathrm{~K}$
$R 2=1 K$
R3 $=4 \mathrm{~K} 7$
R4-11-13-15-17=NC
R5-6=12K
$R 7-8=120 K$
R9-10 $=220 \mathrm{~K}$
R12-14=10K
R6-18=33K

R19-20 = 47R
C1 $=2.2$ uF $63 V \mathrm{MKT}$
$\mathrm{C} 2=220 \mathrm{pF}$
C3-4-11-12=100nF 63V MKT
C5-6-9-10=10nF 63V MKT
$\mathrm{C} 13=6.8 \mathrm{nF} 63 \mathrm{~V}$ MKT
C14=3.3nF 63V MKT
C15 $=33 n \mathrm{~F} 63 \mathrm{~V}$ MKT
C16=18nF 63V MKT

C17-18 $=47 \mathrm{uF} 25 \mathrm{~V}$
TR1-2=47K trimmer
IC1 = TL071
IC2-3=TL072-NE5532
$J 1=2$ pin conn. 2.54 mm pin step
J $2 \mathrm{~A}=8$ pin conn. 2.54 mm pin step
or 8 pinhead 2.54 mm pin step*

All Resistors is $1 / 4 \mathrm{~W}$ 1\%

Typical specifications	
Input sensitivity	1 Vrms
Input impedance	47 K
High Pass filter	$20 \mathrm{HZ}-:-200 \mathrm{HZ}$
Band Pass filter	$200 \mathrm{HZ}-:-3500 \mathrm{HZ}$
Low Pass filter	$3500 \mathrm{HZ}-:-20 \mathrm{KHZ}$
Slope	$-12 \mathrm{~dB} /$ oct

The protection circuit from DC voltages [Fig.2] and delay connection the speakers is the same with what exist in $\mathbf{2}$-way active loudspeaker where exists and the relative description. They exist certain various, as has been added a detection stage of continuous voltages and a relay [RL2]. The contacts of RL1 connect the speakers the high and mid frequencies, the two contacts of RL2 are connected at the parallel and connect the speaker of low frequencies in the exit of IC7. Here exist also the stage of $\pm 15 \mathrm{~V}$ supply for the crossover and suffices for each choice of crossover circuit.

$\mathrm{R} 1=470 \mathrm{R} 1 \mathrm{~W}$	$\mathrm{C} 4=10 \mathrm{uF} 25 \mathrm{~V}$	$1 C 1=4093$
R2-3 $=1 \mathrm{M}$	$\mathrm{C} 5=1 \mathrm{uF} 25 \mathrm{~V}$	IC2 $=7812$
$\mathrm{R} 4=22 \mathrm{~K}$	C6=4.7uF 25 V	$1 C 3=7815$
R5-21=33K	C7-8-10-11-13-14=33uF 63 V	$1 C 4=7915$
R6-8-16=15K	C9-12-15=22uF 16 V	Q1-2 = BD678
R7-9-17=56K	C16-17=2200uF 25 V	Q3-4-5=BC550C
R10-23-18=56K	C22-23=10uF 25 V	RL1-2=12V RELAY G2R2 [OMRON]
R11-12-19 = 10K	D1-2-3-4=1N4002	J2B=8pin conn. 2.54 mm pin step
R14-15-20=3K9	D5 $=8.2 \mathrm{~V} 1 \mathrm{~W}$ Zener	$J 3 \mathrm{~B}=3$ pin conn. 2.54 mm pin step
$\mathrm{R} 22=1 \mathrm{~K}$	D6-7.....26=1N4148	J $8 \mathrm{~A}-\mathrm{B}=2$ pin conn. 2.54 mm pin step
C1 $=100 \mathrm{uF} 25 \mathrm{~V}$	D27=Led 5mm	male-female
C2-3-18-19-20-21=100nF 63V MKT	BR2=BRIDGE RECT. 80V 1.5A	All Resistors is 1/4W 1-5\%

Fig. 3--POWEA BLOCK FOR 3-WAY ACTIUE LOUDSPEAKER
5 an $9 / 02$

In the Fig.3, exist the circuit of power amplifiers that drive the corresponding speakers. The choice are also here the STK4044XI of SANYO with output power roughly 100 W each one, power that consider that is very good for the drive the majority of speakers of trade, in high levels. The sound quality that produces is very good. The type choice with clue XI became because it has better and more modern internal designing, as regards types II and V. It can used also other types [B and V] without exists some problem. Filters RLF1.. 3 are made by a resistor 10R 3 W that to around her we wrap roughly 30 coils in three layer, wire from cupreous insulated with diameter 1 mm . The capacitors C66.... 69 are placed above in main PCB and near in the power amplifiers.

R23-33-43-32-42-52=1K
R24-34-44=47K
R25-26-35-36-45-46=100R
R27-37-47=1K
R28-38-48 = 0.22R 5W
R29-39-49 = 4 R 7 1W
R30-40-50=56K
R31-41-51=10K

RLF1...3=FILTER* See text
C24-38-52=330pF
C25-39-26-40-54=1uF 63V MKT
C53 $=2.2 \mathrm{uF} 63 \mathrm{~V}$ MKT
C27-28-42-56-41-55=100pF
C29-43-57=100pF
C30-44-48 = 15 pF
C31-45-59=100nF 100V MKT

C32-46-50=1nF 63V MKT
C33-37-47-51-63-65=100uF 63V
C34-48-62=220uF 25V
C35-36-49-50-61-64=10uF 63V
C66-67-68-69=15000uF 63V
IC5-6-7 = STK4044XI* See text
F2-3=Fuse 5A Fast $5 \times 20 \mathrm{~mm}+\mathrm{PCB}$ case
J4A-5A-6A=2 pin conn. 3.96 mm pin step

Typical specifications

Input sensitivity	1Vrms	
Input impedance	47K	
Output Power (0.1\%	100W/8R per Band	
THD)	Power Supply	$\pm 53 \mathrm{~V}$

Figu 4--3MAY ACTJUE LSP ELOCK DLAGRAM
In the Fig.4, appear a big part of various stages and connections between them. As it appears the speakers are placed in suitable wooden box. In his rear part of box and on a leaf of aluminum are placed the power transformer T1, the power bridge rectifier BR1, the switch S1, the main power plug JF1, fuse F1, the RCA plug JF2 and the indicative led D27. Transformer T1 has two outputs $\mathbf{A}=2 \times 38 \mathrm{Volts}$ and $\mathbf{B}=2 \times 15 \mathrm{Volts}$. Bridge BR1 clinching above in aluminum so that it's frozen. On a big heatsink clinching the IC5-6-7. In plug JF2 enter the acoustic low level signal from the preamplifier exit. Good it's the crossover PCB it's found far by the T1 transformer.

Fig.5--Crossover calculation

- 3-Way Active Loudspeaker - Main PCB [88kb]
- 3-Way electronic crossover -12dB/ oct - PCB [24kb]
- 3-Way Active Loudspeaker in Greek

