

KORG PROGRAMMABLE POLYPHONIC SYNTHESIZER BERVICE D DANUL

CONTENTS

1. SPECIFICATIONS 1
2. STRUCTURAL DIAGRAM 2
3. BLOCK DIAGRAM. 5
4. CIRCUIT DIAGRAM. 7
5. PC BOARD 10
6. CIRCUIT DESCRIPTIONS 14
7. TROUBLESHOOTING TABLE. 20
8. CHECK AND ADJUSTMENT PROCEDURE 21
9. REFERENCE DATA 23
10. PARTS LIST 32
KEIO ELECTRONIC LABORATORY CORPORATION TOKYOIJAPAN

H timerout

6. CIRCUIT DESCRIPTIONS

Introduction

The POLY-800 is an eight voice, programmable polyphonic synthesizer disigned, among other things, to be battery operated and thus portable, (It weighs less than 10 lbs with batteries included.) It features 64 programs with Edit and Tape Interface, MIDI (Musical Instrument Digital Interface) capabilities, built-in Noise Generator, Chorus and an all-digital programming system called the "DAC" (Digital Access Control) System.

KEYBOARD DATA PROCESSING AND PANEL SWITCH OPERATION

There are six 8 -tone keyboard buses (plus 1 tone for high C). IC34 decodes addresses for CPU bus line supply.

Key on/off data is read by the CPU via the IC33 buffer.
When the CPU receives key data, it instantly outputs pitch data to the TG. (Tone Generator)
Note: If IC34 (TC4OH138) fails, then there will be no sound for some or all groups of eight notes. If IC33 (TC4OH240) fails then sound will not be heard for every eighth note.
Switch operation is exactly the same as the keyboard.
DC01 and DC02 octave switching is read by the CPU via a matrix circuit and performed by IC3 (MSM5232) itself. The MSM5232 output goes through a waveform synthesis circuit (which includes IC's 4, 5, and 6) and is input to the filter chip IC1 (NJM2069).
Likewise, EG (DEG1, DEG2, DEG3), LEVEL1, LEVEL2, CUTOFF, and other switching is read by the CPU via the same matrix. The CPU processes the data and controls IC2069 via a D/A converter and time sharing CV circuit.
Data for sounds created by the user is stored in static RAM IC21 (HM6116). Therefore, to maintain all program data when the unit is turned off, it is necessary for this type of memory to have a battery back-up. Six size "C" 1.5 V batteries provide backup power for RAM, as well as power the unit when the AC adaptor is not in use. A charged capacitor keeps RAM memory in tact for a short period of time if the batteries are weak or are removed. When replacing batteries, the user must be careful not to take more than four minutes, because contents of program memory will be erased if beyond that time, or if the battery voltage drops below the required level (about 6 volts).

ABOUT MIDI

1. MIDI (Musical Instrument Digital Interface) is a hardware and software set of standards agreed on by many synthesizer manufacturers. It allows the interconnection of synthesizers, sequencers, computers, and rythm machines, 5-Pin DIN cords are used for connection between instruments and other devices. Maximum cable length is 15 meters (50 feet).
The POLY- 800 can be connected to other MIDI eauipped units for transmission and reception of the following data.
1) Key data [keyboard, sequencer]
2) Joystick
3) Sequencer clock \& stop/start control
4) Program change

Note: Some instruments may not be able to process certain data. For example, if you connect the POLY- 800 to a unit that does not have a pitch bending function, that unit will not be affected by POLY-800 pitch bending joystick movement.

2. Data format

MIDI data transmission is in the form of messages of several bytes. Except for real time messages, a message always includes 1 status byte followed by 1 or 2 data bytes.

1) Key data consists of 3 bytes.

STATUS	SECOND	THIRD	DESCRIPTION
1001 nnnn	OKKKKKKK	OWVVVV	

nnnn is the channel number. During transmission the keyboard channel is 0000 (channel 1), the sequencer is 0001 (channel 2). During reception it varies from $1 \sim 16$. (depending on the channel the user selects)

KKKKKKK determines keyboard pitch ($0 \sim 127$). For example, KKKKKKK=60 means the middle C key. See chart below.

If the POLY- 800 receives keyboard data that is above or below its octave range, it shifts the octave and sounds the note within its keyboard range.
For example, when the POLY-800 is connected to a five octave keyboard and the DCO octave is programmed for 16 ', the upper four octaves of the five octave keyboard will respond just like the POLY-800's keyboard. Notes that are played in the fifth octave will repeat the notes in the fourth octave.

VVVVVVV is key velocity. On the POLY-800 this is either 0 or 64.
VVVVVVV $=64$ if no velocity sensors.
VVVVVVV $=0$ means note off, with velocity $=64$

KEY VELOCITY

2) Joystick

Joystick X axis movement (bend) and Y axis movement (modulation) should be considered separately.
Joystick (bend) sensitivity is determined by the receiving side. Center values are sent as $00 \mathrm{H}, 40 \mathrm{H}$.

STATUS	SECOND	THIRD
11100000	OVVVVVVV (LSB)	OVVVVVVV(MSB)

| LOW | CENTER | |
| :---: | :---: | :---: |$|$| HIGH |
| :---: |
| LSB MSB |
| $00 H ~$ LSB MSB |
| $00 H$ |

JOYSTICK (MODULATION MG)

STATUS	SECOND	THIRD	DESCRIPTION
10110000	00000001	Onnnn000	+Y, DCO MG
10110000	00000010	Onnnn000	- Y, VCF MG

3) Sequencer Clock \& start/stop control.

The above are defined by 1 byte (real time messages).
(1) Sequencer clock (F8H)

STATUS	DESCRIPTION
11111000	Synchronization is achieved by using 24 clock pulses per quarter note.

(2) Start (FAH)

STATUS	DESCRIPTION
11111010	Sent when start switch is pressed on sequencer or rhythm machine.

(3) Stop (FCH)

STATUS	DESCRIPTION
11111100	Sent when stop switch is pressed. Stops sequence.

4) Program change [CnH ; ($T \times n=0 \mathrm{RX} n=0 \sim 15)$]

Consists of 1 status byte and 1 data byte.

STATUS	DATA
1100 nnnn	OPPPPPPP

nnnn is the channel number which is 0000 for transmission and can be changed from $0 \sim 15$ for reception.
PPPPPPP is the program number which for the POLY-800 is as shown in the chart below. (64 possible combinations from $00 \mathrm{H} \sim 3 \mathrm{FH}$)

2nd No. 1st No.	1	2	3	4	5	6	7	8
1	$\begin{gathered} \hline 0 \mathrm{OH} \\ (0) \\ \hline \end{gathered}$	01H (1)	$\mathrm{O} 2 \mathrm{H}$ (2)	$\begin{aligned} & \hline 03 \mathrm{H} \\ & (3) \end{aligned}$	$\begin{gathered} 04 \mathrm{H} \\ (4) \end{gathered}$	05H (5)	$\begin{gathered} 06 \mathrm{H} \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 07 \mathrm{H} \\ \text { (7) } \\ \hline \end{gathered}$
2	$\begin{gathered} 08 \mathrm{H} \\ \text { (8) } \end{gathered}$	$\begin{gathered} \hline 09 \mathrm{H} \\ \text { (9) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { OAH } \\ & (10) \end{aligned}$	$\begin{aligned} & \hline \mathrm{OBH} \\ & (11) \end{aligned}$	$\begin{aligned} & \hline \mathrm{OCH} \\ & (12) \end{aligned}$	$\begin{aligned} & \hline \text { ODH } \\ & (13) \end{aligned}$	$\begin{aligned} & \hline \text { OEH } \\ & (14) \end{aligned}$	$\begin{aligned} & \text { OFH } \\ & \text { (15) } \\ & \hline \end{aligned}$
3	$\begin{aligned} & \hline 10 \mathrm{H} \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 11 \mathrm{H} \\ & (17) \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \mathrm{H} \\ & (18) \end{aligned}$	$\begin{aligned} & \hline 13 \mathrm{H} \\ & (19) \end{aligned}$	$\begin{aligned} & 14 \mathrm{H} \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 15 \mathrm{H} \\ & \text { (21) } \end{aligned}$	$\begin{aligned} & \hline 16 \mathrm{H} \\ & \text { (22) } \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \mathrm{H} \\ & \text { (23) } \\ & \hline \end{aligned}$
4	$\begin{aligned} & \hline 18 \mathrm{H} \\ & (24) \end{aligned}$	$\begin{aligned} & 19 \mathrm{H} \\ & (25) \end{aligned}$	$\begin{aligned} & \hline \text { 1AH } \\ & \text { (26) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 18 \mathrm{H} \\ & \text { (27) } \end{aligned}$	$\begin{aligned} & \hline 1 \mathrm{CH} \\ & (28) \end{aligned}$	$\begin{aligned} & \text { 1DH } \\ & \text { (29) } \end{aligned}$	$\begin{aligned} & \text { 1EH } \\ & (30) \end{aligned}$	$\begin{aligned} & \hline \text { FH } \\ & \text { (31) } \end{aligned}$
5	$\begin{aligned} & 20 \mathrm{H} \\ & (32) \end{aligned}$	$\begin{aligned} & 21 \mathrm{H} \\ & \text { (33) } \end{aligned}$	$\begin{aligned} & 22 \mathrm{H} \\ & (34) \end{aligned}$	$\begin{aligned} & \hline 23 \mathrm{H} \\ & (35) \end{aligned}$	$\begin{aligned} & 24 \mathrm{H} \\ & (36) \end{aligned}$	$\begin{aligned} & \hline 25 \mathrm{H} \\ & (37) \end{aligned}$	$\begin{aligned} & \hline 26 \mathrm{H} \\ & (38) \end{aligned}$	$\begin{aligned} & 27 \mathrm{H} \\ & (39) \end{aligned}$
6	$\begin{aligned} & 28 \mathrm{H} \\ & (40) \end{aligned}$	$\begin{aligned} & 29 \mathrm{H} \\ & (41) \end{aligned}$	$\begin{aligned} & \text { 2AH } \\ & \text { (42) } \end{aligned}$	$\begin{aligned} & \text { 2BH } \\ & \text { (43) } \end{aligned}$	$\begin{aligned} & 2 \mathrm{CH} \\ & (44) \end{aligned}$	$\begin{aligned} & \text { 2DH } \\ & \text { (45) } \end{aligned}$	$\begin{aligned} & 2 E H \\ & (46) \end{aligned}$	$\begin{aligned} & \text { 2FH } \\ & \text { (47) } \end{aligned}$
7	$\begin{aligned} & 30 \mathrm{H} \\ & (48) \end{aligned}$	$\begin{aligned} & \hline 31 \mathrm{H} \\ & \text { (49) } \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \mathrm{H} \\ & (50) \end{aligned}$	$\begin{aligned} & 33 \mathrm{H} \\ & (51) \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \mathrm{H} \\ & (52) \end{aligned}$	$\begin{array}{r} 35 \mathrm{H} \\ (53) \\ \hline \end{array}$	$\begin{aligned} & \hline 36 \mathrm{H} \\ & (54) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37 \mathrm{H} \\ & (55) \\ & \hline \end{aligned}$
8	$\begin{aligned} & 38 \mathrm{H} \\ & (56) \end{aligned}$	$\begin{aligned} & 39 \mathrm{H} \\ & (57) \end{aligned}$	$\begin{aligned} & 3 \mathrm{AH} \\ & \text { (58) } \end{aligned}$	$\begin{aligned} & \hline 3 \mathrm{BH} \\ & (59) \end{aligned}$	$\begin{aligned} & 3 \mathrm{CH} \\ & (60) \end{aligned}$	$\begin{aligned} & \hline \text { 3DH } \\ & \text { (61) } \end{aligned}$	$\begin{aligned} & \hline \text { 3EH } \\ & \text { (62) } \end{aligned}$	$\begin{aligned} & \hline 3 F H \\ & \text { (63) } \end{aligned}$

TRANSMITTED DATA

STATUS	SECOND	THIRD	DESCRIPTION
1001000*	OKKKKKKK	01000000	NOTE ON
1000000*	OKKKKKKK	01000000	NOTE OFF
10110000	00000001	Onnnn000	JOYSTICK (DCO)
10110000	00000010	Onnnn000	JOYSTICK (VCF)
1011000*	01111100	00000000	MODE CHANGE OMNI OFF
1011000*	01111101	00000000	MODE CHANGE OMNI ON
1011000*	01111111	00000000	MODE CHANGE POLY ON
11000000	000PPPPP		PROGRAM CHANGE (0~63)
11100000	00000000	Obbbbbbb	PITCH BENDER ($0 \sim 40 \mathrm{H} \sim 7 \mathrm{FH}$)

NOTES: 1. The * can be 0 or 1. If 1 , it becomes an exclusive seq data channel.
2. Pitch range ($O K K K K K K K$) is $24 \sim 54 \mathrm{H}$.
3. Joy stick range (OnnnOOO) 4-bit resolution.
4. Pitch bender range (Obbbbbbb)

7-bit resolution; MSB only.
5. Mode change is sent with seq start/stop.

For start, omni off, poly on: for stop, omni ON, poly on, to ch1 and ch2 respectively.
6. Real time messages are only sent during seq operation.

RECOGNIZED RECEIVE DATA 1

STATUS	SECOND	THIRD	DESCRIPTION
1001****	OKKKKKKK	OVVVVVVV	NOTE ON ($\mathrm{V}>0$)
			NOTE OFF (V=0)
			VELOCITY IGNORED
1000 ****	OKKKKKKK	OVVVVVVV	NOTE OFF
			VELOCITY IGNORED
1011****	00000001	Onnnnnnn	MG1 (DCO)
			bit $2 \sim$ bit 0 IGNORED
			4 bit RESOLUTION
1011****	00000010	Onnnnnnn	MG2 (VCF)
			bit $2 \sim$ bit 0 IGNORED
			4 bit RESOLUTION
1011****	0xxxxxx	00000000	MODE CHANGE
			(SECOND BYTE)
			7C; OMNI OFF
			7D; OMNI ON
			(REFER TO NOTE 8)
1100****	OPPPPPPP		PROGRAM CHANGE
			(EXAMPLE $70 \rightarrow 06$)
			(EXAMPLE $64 \rightarrow 00$)
1110****	O-	Obbbbbbb	PITCH BENDER
			SECOND IGNORED
			ONLY THIRD RECOGNIZED

NOTES: 1. If omni is off, then only channel specified in parameter will be received.
If omni is on, then everything will be received but mode change commands will only be obeyed for specified channel.
2. Pitch range ($0 K K K K K K K$) is $24 \mathrm{H} \sim 54 \mathrm{H}$. Other values will be transposed to nearest octave.
3. All Omni on/off commands will be interpreted as being accompanied by poly on.

STATUS

11111000	TIMING CLOCK
11111010	START
$\triangle+1111041$	CONTINUESTART-STARTF
11111100	STOP

NOTE: Timing clock is only received between start and stop. Continue start functions like start.

PANEL CONTROL

PARAMETER

86

87

88

RCV CH:

PROG CHANGE;
RECEIVE CHANNEL $1 \sim 16$ BACK UPPED ONLY EFFECTIVE AFTER OMNI OFF OR MODE CHANGE COMMAND. $0=$ DISABLE
1 = ENABLE
ONLY FUNCTIONS FOR RECEPTION. ALWAYS USED IN TRANSMISSION.
DISABLE DEFAULT
SEQ CLK; $\quad 1$ = INTERNAL; SEQ PERFORMED BY INTERNAL CLOCK.
2 = EXTERNAL, SEQ PERFORMED ACCORDING TO RECEIVED MIDI
CLOCK. NOT TRANSMITTED.
INTERNAL DEFAULT

MAIN CIRCUIT DESCRIPTIONS

Below are simple descriptions of each circuit block.
Refer to circuit diagram for number.

1) Tape interface input circuit:

Consists of amplifier and comparator. When command is executed, data on this line is input to the CPU accumulator's 7th bit.

2) CPU:

A CMOS 8-bit microprocessor IC24 (80C85) featuring low power consumption. Virtually all POLY-800 functions are handled by this CPU.

3) Reset circuit:

IC40 (PST518) is a 3-pin IC used for reset. It generates an initial reset voltage of about 4.2 V .
4) Sequencer tempo clock oscillator circuit

The tempo circuit includes IC28 (TC4OHO74) and 1/2 of IC36 (which is $1 / 2$ of a TL072).
The tempo control is connected to CN2 pin 1 providing $10 \mathrm{~Hz} \pm 20 \%$ at the knob's 0 position and $100 \mathrm{~Hz} \pm 20 \%$ at the 10 position for CPU interrupts. If this circuit fails, then there will be no sound from the sequencer section.

5) Interrupt oscillator circuit:

This oscillator cycle is used for the EG, MG, LED displays, and S / H time division processing. Oscillator frequency is $2400 \mathrm{~Hz} \sim 3600 \mathrm{~Hz}$. Interrupt order is by priority. If this circuit fails, EG operation and LED indication may become erratic.
6) Address Decoder:

TTL circuit decodes addresses for RAM and other ICs.
7) ROM (8192 words $\times 8$ bit PROM)
8) RAM (2048 words $\times 8$ bit static RAM)
9) Address latch:

IC latches according to CPU ALE (Address Latch Enable) terminal output signal since CPU uses address LSB 8bits together with data bus 8bit input.
10) Peripheral I/O:

PA, PB, and PC ports are all used for output. The internal timer is used for the interface IC26 (63850) reference clock. The CPU 3 MHz clock frequency is divided by 6 to obtain 500 kHz . RAM is used for the program working area.
11) LED display drive circuit:

IC30 (BA618) and IC31 (M54513) form a 6×8 matrix for time sharing indication by the panel's 7 -segment LED display.

12) 8-bit D/A converter:

Uses CMOS noninverting buffer IC32 (HD 14050 or " 4050 "), and BR9 (RKM10L253F or "BR9") a 10 -pin ($R=25 \mathrm{kohm}$) R-2R ladder resistor in D/A converter with output of $O V \sim$ 4 V .
13) External DC power supply ripple filter:

Diode D2 is used to protect the circuit in case of reverse AC adapter polarity.
14) LED display power supply:

Circuit is designed so that LEDs become dim when battery voltage drops below rated level. (about 6V)
15) +5 V power supply:

This circuit design is employed because it maintains normal operation up until just before the batteries drop below rated voltage of Volts (about 6V)
16) -5 V power supply:

A type of DC-DC converter.
17) Bend depth circuit (KLM-599 PCB):

Because MIDI is used, R6 and R7 assure correct joystick center values.
18) A / D converter comparator.
19) Master oscillator:

Varactor VC1 and coil KL-003 are used in the oscillator circuit. This generates a frequency of about 2 MHz at the tune knob's center position. This is divided down (to about 1 MHz) to supply the TG. (CL1, CL2)
Bend and vibrato control voltages are D/A converted by IC35 (3404) and applied to the oscillator.
20) EG S/H circuit:

EG values calculated by the CPU are output by time sharing and input to the TG.
LED diodes for each voice are there to smooth the stepped transition.
21) Keyboard panel switch input circuit:

A 9×8 matrix is formed by DTC5, IC34 (TC4OH138), and IC33 (TC4OH240). This handles keyboard and panel switch outputs as well as output from the comparator in circuit diagram (18).
22) Detune circuit:

Lowers frequency by thinning out clock pulses.
23) Tape interface output circuit.
24) CV circuit:

Performs time division output and S/H on CV for VCF and master oscillator.
25) 6-bit latch circuit:

A 6-bit control output circuit with 2 bits for detune, 2 bits for DCO waveform switching, 1 bit for A/D converter, X-Y switching, and 1 bit for noise gate control.
26) 6-bit latch circuit:

A 6-bit control output circuit with 5 bits for S/H control and 1 bit for chorus on/off switching.
27) VCA + VCF circuit:

The IC1 (NJM2069) has three internal VCAs and one internal 24 dB /oct VCF (LPF). SIG1 and SIG2 respectively receive mixed DCO1 and DCO2 inputs from the TG; LEVEL1 and LEVEL2 are control input terminals.
The other VCA is for noise only. The 9pin (VCA LIN IN) is its control terminal.
MG, EG INT and CUTOFF, KBD TRACK are controlled separately and input to VCF LOG.
See REFERENCE DATA for details.
28) Analog switch circuit:

Performs DCO waveform switching and joystick A/D converter input switching.
29) Noise generator.
30) MIDI interface circuit:

This is a standard type MIDI interface circuit employing the MIDI interface IC26 (ACIA63B50) and high processing speed photocoupler PC-1. (PC-900)
D22 is used to prevent destruction of the photocoupler LED in case a reverse voltage is applied. R119 (220 ohm) and R121 (220 ohm) resistors are for prevention of damage in case of excessive current.
The circuit is designed to provide a data transmission rate of $31.25 k$ baud $(\pm 1 \%)$.
31) Waveform synthesis circuit:

Using the TG's various foot outputs ($16^{\prime}, 8^{\prime}, 4^{\prime}$, and 2^{\prime}), this produces 2-waveforms, one by addition on a $1=1=1=1$ basis and the other using the ratio $1=1 / 2=1 / 4=1 / 8$.
The block resistor BR5 (RKC $1 / 8 \mathrm{B4} 33 \mathrm{~K}$) is made up of four $1 / 8 \mathrm{~W} 33 \mathrm{k}$ resistors ($1=1=1=1$). BR6 (RMO 0470) is 10 K ohms using $\mathrm{R}, 2 \mathrm{R}, 4 \mathrm{R}, 8 \mathrm{R}(1=1 / 2=1 / 4=1 / 8)$.
32) TG (Tone Generator):

An IC having eight sets of dividers and VCAs. See REFERENCE DATA for details.

KLM-597, 598
KLM-598 consists of the chorus circuit and headphone amp circuit. The VCF output signal transits noise gate F1 (2SK381) and is input to compressor IC3 (NE570); then IC4 (M5224P) detects the envelope.
The clock generator circuit which drives the BBD IC makes IC7 (M5224P) generate a triangle wave which comparator IC8 (393) converts to a sawtooth wave with a change of pitch for a more natural chorus effect.
F2 (2SK381B) at the output is an FET for chorus on/off switching.
KLM-597 includes the panel section LED display and switch matrix circuitry.

7. TROUBLESHOOTING TABLE

The order in which things should be checked naturally coincides with the signal path in the POLY-800. Please refer to this flow chart to help you pinpoint sources of malfunctions. Remember to save user programs to tape before beginning service procedures.

8. CHECK AND ADJUSTMENT PROCEDURE

ADJUSTMENT PROCEDURE

Caution: This product has been thoroughly adjusted at the factory before shipment. Therefore do not adjust anything other than those VRs required for servicing.

BEFORE making any calibration adjustments, Be sure test data is loaded into POLY-800.
The following setting chart shows the program data used for service testing. After inputting the data, save it on tape for future time saving convenience.

PROGRAM no. 11 (noise level):

Parameter:	17	18	33	41	43	45	48	71	72	73	74	75	76	83	84
Value:	0	1	15	99	0	0	0	0	0	31	0	31	0	0	0

PROGRAM no. 12 (master oscillator):

Parameter:	11	12	13	$14 \sim 16$	17	18	41	42	43	45	48	51	52	53	54	55	56	83	84
Value:	2	2	1	0	30	1	60	0	0	0	0	0	0	31	0	31	0	0	0

PROGRAM no. 13 (cutoff):

Parameter:	11	12	13	$14 \sim 16$	17	18	41	42	43	45	48	51	52	53	54	55	56	83	84
Value:	2	1	1	0	30	1	12	15	2	0	0	0	0	31	0	31	0	0	0

PROGRAM no. 14 (resonance):

Parameter:	11	12	13	$14 \sim 16$	17	18	41	42	43	45	48	51	52	53	54	55	56	83	84
Value:	1	1	1	0	31	1	59	15	0	0	0	0	0	31	0	31	0	0	0

1. Power supply circuit (KLM-596, circuit no. 15):

Be sure that the specified AC adapter is being used: 9V, 300 mA ,

1) +5 V check and adjustment:

Use DVM (digital voltmeter) to check KLM-596 connector CN6 Pin 6 and confirm $+5 \mathrm{~V}(\pm 0.005 \mathrm{~V})$. Adjust VR1 if necessary.
2) -5 V check:

Use DVM to check KLM-596 connector CN6 Pin 8 and confirm -5V (within -4.7V $\sim-5.7 \mathrm{~V}$)
2. D/A converter check and adjustment (KLM-596, circuit no. 12):

With joystick bend control at center position:
connect DVM to KLM-596 IC10 (TLO62) Pin 7 and confirm $1.986 \mathrm{~V} \pm 0.005 \mathrm{~V}$. Adjust VR4 if necessary.

Also confirm:
3.929 V for an upward pitch bend and
0.076 V for a downward pitch bend.

Note: Adjustment is easiest in the joystick circuit although the idea is to obtain a 4 V output from IC 38 (TLO62) by adjusting the D/A converter when IC 81C55 port A output is all high.

3. Noise level check and adjustment:

1) Select program no. 11.
2) Depress C3 key and set to HOLD.
3) Connect oscilloscope to KLM-596 CN6A 3 pin and confirm noise level of $0.3 \mathrm{Vp}-\mathrm{p}(\pm 20 \%)$.
4) Adjust VR3 if necessary.

4. Master oscillator check and adjustment:

Set tune knob to center and bend intensity to maximum. Connect AT-12 to line out jack.

1) Select program no. 12.
2) Depress C3 key and set to HOLD.
3) Confirm AT-12 indication of - 1 OCT, C, 0 cent. If necessary, adjust by turning KL. 003 coil.
4) Next, push joystick to maximum upward pitch bend position and confirm AT-12 reading of -1 OCT, G, +35 cents. Adjust KLM-601 VR2 if necessary.
5) At maximum joystick downward pitch bend AT-12 indication should be -2 OCT, D, -35 cents. Adjust KLM-601 VR1 if necessary.

Δ; MODIFICATION

Δ; VR3 is a semi-fixed resistor to fix range of tune VR on front panel.
Confirm $+40 \sim+70$ cents when tune VR is at \# max position.
Confirm $-40 \sim-70$ cents when tune VR is at b max position.
If necessary, Adjust VR3.
5. Cutoff check and adjustment:

1) Select program no. 13.
2) Play C3 and set to HOLD.
3) Connect oscilloscope to CN6A pin 3 and observe waveform as in figure 1.
4) Adjust VR2 to obtain maximum waveform amplitude.

Fig. 1
6. Resonance check and adjustment:

1) Select program no. 14.
2) Play G4 and set to HOLD.
3) Confirm no oscillation and confirm that waveform is as shown in figure 2.
4) Adjust VR5 if necessary to prevent oscillation or to correct waveform deviation from figure 2 example.

Fig. 2

9. REFERENCE DATA

80C85A SINGLE CHIP 8-BIT CMOS MICROPROCESSORS

- Single +5V Power Supply
- 100% Software Compatible with 8080 A
- $1.3 \mu \mathrm{~s}$ Instruction Cycle (8085A); $0.8 \mu \mathrm{~s}$ (8085A-2)
- On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip System Controller: Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One is non-Maskable) Plus an 8080A-compatible interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision Arithmetic
- Direct Addressing Capability to 64k Bytes of Memory

BLOCK DIAGRAM

8.BIT INTERNAL DATA BUS

PIN CONFIGURATION

FUNCTIONAL PIN DEFINITION

The following describes the function of each pin;

Symbol	Function
$A_{8}-A_{15}$ (Output, 3-state)	Address Bus: The most significant 8 bits of the memory address or the 8 bits of the I/O address, 3 stated during Hold and Halt modes and during RESET.
$A D_{0-7}$ (Input/Output, 3-state)	Multiplexed Address/Data Bus: Lower 8 bits of the memory address (or 1/O address) appear on the bus during the first clock cycle (T state) of a machine cycle. It then becomes the data bus during the second and third clock cycles.
ALE (Output)	Address Latch Enable: It occurs during the first clock state of a machine cycle and enables the address to get latched into the on chip latch of peripherals. The falling edge of ALE is set to guarantee setup and hold times for the address information. The falling edge of ALE can also be used to strobe the status information. ALE is never 3 -stated.
S_{0}, S_{1}, and $10 / \bar{M}$ (Output)	Machine cycle status:
	$10 / \bar{M} \quad S_{1} \quad S_{0}$ Status
	$0 \quad 0 \quad 1 \quad$ Memory write
	0100 Memory read
	$101 / 0$ write
	110 l/O read
	0111 Opcode fetch
	111 Interrupt Acknowledge
	* 000 Halt
	* $\times \times$ Hold
	* $\times \times$ Reset
	* $=3$-state (high impedance)
	X = unspecified
	S_{1} càn be used as an advanced R / \bar{W} status. $10 / \bar{M}, S_{0}$ and S_{1} become valid at the beginning of a machine cycle and remain stable throughout the cycle. The falling edge of ALE may be used to latch the state of these lines.

$\overline{\mathrm{RD}}$

(Output, 3-state)
$\overline{W R}$
(Output, 3-state)

READY
(Input)

HOLD
(Input)

HLDA
(Output)

INTR
(Input)

Function

READ control: A low level on $\overline{\mathrm{RD}}$ indicates the selected memory or $1 / O$ device is to be read and that the Data Bus is available for the data transfer, 3 stated during Hold and Halt modes and during RESET.

WRITE control: A low level on $\overline{W R}$ indicates the data on the Data Bus is to be written into the selected memory or 1/O location. Data is set up at the trailing edge of $\overline{\text { WR }}$. 3 stated during Hold and Halt modes and during RESET.
If READY is high during a read or write cycle, it indicates that the memory or peripheral is ready to send or receive data. If READY is low, the cpu will wait an integral number of clock cycles for READY to go high before completing the read or write cycle. READY must conform to specified setup and hold times.
HOLD indicates that another master is requesting the use of the address and data buses. The cpu, upon receiving the hold request, will relinquish the use of the bus as soon as the completion of the current bus transfer. Internal processing can continue. The processor can regain the bus only after the HOLD is removed. When the HOLD is acknowledged, the Address, Data, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $10 / \bar{M}$ lines are 3 -stated.
HOLD ACKNOWLEDGE: Indicates that the cpu has received the HOLD request and that it will relinquish the bus in the next clock cycle. HLDA goes low after the Hold request is removed. The cpu takes the bus one half clock cycle after HLDA goes low.
INTERRUPT REQUEST: is used as a general purpose interrupt. It is sampled only during the next to the last clock cycle of an instruction and during Hold and Halt states. If it is active, the Program Counter (PC) will be inhibited from incrementing and an INTA will be issued. During this cycle a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR is enabled and disabled by software. It is disabled by Reset and immediately after an interrupt is accepted.

RST 5.5

Function

INTERRUPT ACKNOWLEDGE: is used instead of (and has the same timing as) $\overline{R D}$ during the Instruction cycle after an INTR is accepted. It can be used to activate the 8259 Interrupt chip or some other interrupt port.

RESTART INTERRUPTS: These three inputs have the same timing as INTR except they cause an internal RESTART to be automatically inserted.
The priority of these interrupts is ordered as shown in Table 1. These interrupts have a higher priority than INTR. In addition, they may be individually masked out using the SIM instruction.

Trap interrupt is a nonmaskable RESTART interrupt. It is recognized at the same time as INTR or RST 5.5-7.5. It is unaffected by any mask or Interrupt Enable. It has the highest priority of any interrupt. (See Table 1.)

Sets the Program Counter to zero and resets the interrupt Enable and HLDA flip-flops. The data and address buses and the control lines are 3 -stated during RESET and because of the asynchronous nature of RESET, the processor's internal registers and flaps may be altered by RESET with unpredictable results. $\overline{R E S E T}$ IN is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay. The cpu is held in the reset condition as long as RESETIN is applied.

RESET OUT (Output)
x_{1}, x_{2} (Input)

CLK
(Output)

SID (Input) SOD
(Output)

Voc
Vss

Function

Indicates cpu is being reset. Can be used as a system reset. The signal is synchronized to the processor clock and lasts an integral number of clock periods.
X_{1} and X_{2} are conniected to a crystal, LC. and RC network to drive the internal clock generator. X_{1} can also be an external clock input from a logic gate. The input frequency is divided by 2 to give the processor's internal operating frequency.

Clock Output for use as a system clock. The period of CLK is twice the X_{1}, X_{2} input period.

Serial input data line. The data on this line is loaded into accumulator bit 7 whenever a RIM instruction is executed.
Serial output data line. The output SOD is set or reset as specified by the SIM instruction.
+5 volt supply.
Ground Reference.

TABLE 1
INTERRUPT PRIORITY, RESTART ADDRESS, AND SENSITIVITY

Name	Priority	Address Branched To (1) When Interrupt Occurs	Type Trigger
TRAP	1	$24 H$	Rising edge AND high level until sampled.
RST 7.5	2	3 CH	Rising edge (latched).
RST 6.5	3	$34 H$	High level until sampled.
RST 5.5	4	2 CH	High level until sampled.
INTR	5	See Note (2).	High level until sampled.

NOTES:

(1) The processor pushes the PC on the stack before branching to the indicated address.
(2) The address branched to depend on the instruction provided to the cpu when the interrupt is acknowledged.

MSM81C55RS 2048-BIT CMOS STATIC RAM WITH I/O PORTS AND TIMER

- 256 Word $\times 8$ Bits
- Single +5 V Power Supply
- Completely Static Operation
- Internal Address Latch
- 2 Programmable 8 Bit I/O Ports
- 1 Programmable 6-Bit I/O Port
- Programmable 14-Bit Binary Counter/Timer
- Compatible with 8085A and 8088 CPU
- Multiplexed Address and Data Bus
- 40 Pin DIP

BLOCK DIAGRAM

PIN CONFIGURATION

PC3

PIN FUNCTIONS

Symbol
(Input)
$A D_{0-7}$
(Input/Output)

CE or $\overline{C E}$
(Input)
$\overline{R D}$
(Input)
$\overline{\mathrm{WR}}$
(Input)

Function
Pulse provided by the 8085A to initialize the system (connect to 8085A RESET OUT). Input high on this line resets the chip and initializes the three $1 / O$ ports to input mode. The width of RESET pulse should typically be two 8085A clock cycle times.

3-state Addiess/Data lines that interface with the CPU lower 8 -bit Address/Data Bus. The 8 bit address is latched into the address latch inside the 8155 on the falling edge of ALE. The address can be either for the memory section or the $1 / O$ section depending on the $10 / \bar{M}$ input. The 8 -bit data is either written into the chip or read from the chip, depending on the $\overline{W R}$ or $\overline{\mathrm{RD}}$ input signal.
Chip Enable: On the 8155, this pin is $\overline{\mathrm{CE}}$ and is ACTIVE LOW. On the 8156, this pin is CE and is ACTIVE HIGH.
Read control: Input low on this line with the Chip Enable active enables and $A D_{0-7}$ buffers. If $10 / \bar{M}$ pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the selected $1 / 0$ port or command/status registers will be read to the AD bus.
Write control: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or $1 / O$ ports and command/status register depending on $10 / \bar{M}$.

Symbol	Function
ALE (input)	Address Latch Enable: This control signal latches both the address on the $A D_{0-7}$ lines and the state of the Chip Enable and $10 / \mathrm{M}$ into the chip at the falling edge of ALE.
10/M (Input)	Selects memory if low and $1 / 0$ and command/status registers if high.
$\mathrm{PA}_{0-7}(8)$ (Input/Output)	These 8 pins are general purpose $1 / 0$ pins. The in/out direction is selected by programming the command register.
$\begin{aligned} & \mathrm{PB}_{0-7} \text { (8) } \\ & \text { (Input/Output) } \end{aligned}$	These 8 pins are general purpose $1 / 0$ pins. The in/out direction is selected by programming the command register.
$\begin{aligned} & \mathrm{PC}_{0.5}(6) \\ & \text { (Input/Output) } \end{aligned}$	These 6 pins can function as either input port, output port, or as control signals for PA and PB. Programming is done through the command register. When PC_{0-5} are used as control signals, they will provide the following: PC 0_{0} - A INTR (Port A interrupt) $P C_{1}-A B F$ (Port A Buffer Full) $\mathrm{PC}_{2}-\mathrm{A} \overline{\mathrm{STB}}$ (Port A Strobe) $\mathrm{PC}_{3}-\mathrm{B}$ INTR (Port B interrupt) $\mathrm{PC}_{4}-\mathrm{B} \overline{\mathrm{BF}}$ (Port B Buffer Full) PC ${ }_{5}$ - B STB (port B Strobe)
TIMER IN (input)	Input to the counter timer.
TIMER OUT (Output)	Timer output. This output can be either a square wave or a pulse depending on the timer mode.
Vce	+5 volt supply.
Vss	Ground Reference.

BLOCK DIAGRAM

PIN CONFIGURATION

4. HN61364 8192-WORD \times 8-BIT MASK PROGRAMMABLE READ ONLY MEMORY

BLOCK DIAGRAM
PIN CONFIGURATION

BLOCK DIAGRAM

PIN CONFIGURATION

BLOCK DIAGRAM

PIN CONFIGURATION

Sol0 8 ' 1	42 GATE
S010 16'	41×002
$\checkmark 001{ }^{3}$	$40] C \triangle P$,
0874	39 CAPG
086	38 CAPS
OBS 6	37 CAPA
OB4 7	$362^{\prime}-2$
0838	$354^{\prime}-2$
$D B^{\prime} 9$	$348^{\prime \prime}-2$
D8, 10	$3316^{\prime}-2$
080	[32 V ss 3
$\overline{W R} 12$	31.16 '-1
ALE 13	$3088-1$
$\triangle 8314$	29] 4-1
$\triangle B 215$	28] $21-1$
48,16	27 CAP 3
$\Delta 8 \cdot \sqrt{17}$	$26 . C \triangle P=$
RST 18	$25 . C \Delta P_{1}$
CLK2 19	$24 . C \triangle P O$
CLK, 20	23 vss 2
v ss, 21	22] NO

IC MSM5232RS SPECIFICATIONS

The MSM5232RS is a musical instrument tone generator IC that includes eight sets of scale generating frequency dividers and envelope generators with an 8 -bit bus interface integrated on a single chip. It can simultaneously output eight sounds over a seven octave range under microprocessor control.

CHARACTERISTICS

- 2-group 4+4-tone polyphonic output.

Each group has its own clock input; output bus, and control register, enabling rich, variegated sound operation.

- 7-octave range, plus noise output capability.
- Four foot length outputs: $2^{\prime}, 4^{\prime}, 8^{\prime}$ and 16^{\prime}.
- Built-in envelope generator.

Sustained and attenuated envelope waveforms and variable attack and delay time constants.

- Interface for 8-bit microprocessor control.
- Built-in scale generating ROM converts key number into frequency divider data.
- CMOS IC means low power operation.

PIN FUNCTIONS

Symbol
$D B O \sim B 7$
$A B O \sim A B 3$
ALE
WR
CLK1, CLK2

RST

CAPO-CAP7

Function
Data input terminals. Connected to CPU data bus, so all data is input through these terminals.

Address input terminals. These inputs select data write registers.
When this input is at " H ", trailing edge is latched and signals applied to ABO-AB3 are input to address register.
When this input is at " L ", trailing edge is latched and signals applied to DBO-DB7 are input to data latch.
Reference clock input. Output scale is obtained by frequency division of this input. CLK1 is the reference frequency for tone generators TGO-TG3 (group 1), while CLK2 is for TG4-TG7 (group 2).

Internal initialization input terminal. Pull-up resistor is built in.
Envelope generator capacitor connection terminals. Envelopes are generated by charging and discharging of this capacitance through internal resistance. Furthermore, if envelope generator operation is prohibited. a high impedance state will be created and external envelope waveform input will become possible.

Symbol
2'-1~16'-1, $2^{\prime}-2 \sim 16^{\prime}-2$

SOLO8', SOLO16'

GATE

NO

VDD1, VSS1
VDD2,VSS2,VSS3

Function
Tone bus output terminals. Divided into group 1 and group 2. Each is made up of four registers: $2^{\prime}, 4^{\prime}, 8^{\prime}$, and 16^{\prime}. Four tone generators are connected to each tone bus, and are mixed by current adding. Therefore this output must be fed to a low impedance.

Solo sound source output terminals. TG7, 8^{\prime} and 16' pitched rectangle waves are always available at these outputs.
On/off signal output for solo outputs. In the solo mode, TG7 GF is output. It becomes " L " level when solo mode is prohibited.

Noise output terminal. Internal simulated random noise generator provides noise which is available at this output at all times. 5 V power supply terminal.

NOTE: Please connect VDD1 and VDD2 as well as VSS2 and VSS3, each externally.

BLOCK DIAGRAM AND PIN CONFIGURATION

10. PARTS LIST

PART CODE	SPECIFICATIONS	P.C. BOARD	IDENTIFICATION NO. FUNCTION	Q'TY
PHONE JACKs				
$\begin{aligned} & 45001400 \\ & 45001700 \end{aligned}$	$\begin{aligned} & \text { SG-4611 \#01 } \\ & \text { SG-4612 } \# 01 \end{aligned}$	KLM-596 KLM596	3P with SWITCH STEREO	3 1
DC INPUT JACK				
45400300	HEC-0470-01-230		POWER JACK	1
MINIPHONE JACK				
45400900	HSJ-0786-01.010 3.5 ${ }^{\text {d }}$		TAPE I/O	2
HARNESSES				
47040100	HNS-301			1
47040200	HNS-302			1
47040300	HNS-303			1
47040400	HNS-304			1
47040600	HNS-306			1
47040700	HNS-307			1
47040800	HNS-308			1
47040900	HNS-309			1
CONNECTORs				
47408004	S4P W-P2604 \#51	KLM-596		2
47408805	S5P W-P2605 \#51			1
47408807	S7P W-P2607 \#51	KLM-597		1
		KLM-598		1
47408811	S11P W-P2611 \#51	KLM-596		1
47408814	S14P W-P2614 \#51			1
47408815	S15P W-P2615 \#51			2
		KLM-598		1
47408904	L4P W-P2804 \#5 1	KLM-597		2
		KLM-599		1
47408905	L5P WP2805 \#51			1
47408911	L11P W-P2811 \#51	KLM 597		1
47408914	L14P WP2814 \#51			1
IC SOCKETs				
48001282	28P DICA-28CTI	KLM 596		1
48005222	22P C472211			1

PART CODE	SPECIFICATIONS	$\begin{gathered} \text { P.C. } \\ \text { BOARD } \end{gathered}$	IDENTIFICATION NO. FUNCTION	Q'TY
DIN JACK				
45403100	DINJACK 5PIN TCS-5350.01-1011		MIDI I/O	2
RUBBER FEET				
50008700	KOC-F40272			2
CUSHION FOR BATTERY				
50008800	$16 \times 30 \times 4$ KOC-F40280			1
PUSH SW CUSHION A				
50008900	KOC-F40282			1
PUSH SW CUSHION B				
50009000	KOC-F40283			3
BATTERY				
52001100	SUM2DGB			6
RIBBON				
54008100	KOC-F40224			1
HARNESS STOPPER				
54009400	WS-1NA			2
SHIELDING SHEET				
58018004	KOC-F40275			1
CONNECTION CORD				
60201300	6.3¢ PLUG 2.5M			1
SLIDE VR KNOB (IVORY)				
62011600	KOC-E40121			3

PART CODE	SPECIFICATIONS	P.C. BOARD	IDENTIFICATION NO. FUNCTION	Q'TY
JOYSTICK LEVER KNOB				
62012200	KOC-E40149			1
ROTARY VR KNOB				
62012300	KOC-E40151		VR with POWER SW KNOB	1
PUSH SW KNOBs				
62012400	B. 1 (TURQUOISE) KOC-E40153		$\mathrm{L}=13 \mathrm{~mm}$	8
62012401	B-2 (IVORY) KOCE40153		$\mathrm{L}=13 \mathrm{~mm}$	1
62012402	B-3 (RED) KOC-E40153		$L=13 \mathrm{~mm}$	1
62012500	A-1 (IVORY) KOC-E40152		$L=25.5 \mathrm{~mm}$	6
62012501	A-2 (TORQUOISE) KOC-E40152		$\mathrm{L}=25.5 \mathrm{~mm}$	2
BATTERY TERMINALS (SPRING)				
64058100	KOC-C40438			1
64058101	KOC-C40437			1
JOYSTICK Y SUPPORT				
64058400	KOC-C40446			1
JOYSTICK PLATE				
64062600	KOC-C40500			1
SHIELDING SHEET FOR KLM 598				
64062800	KOC-C40509			1
SHIELDING SHEET FOR JOYSTICK				
64062900	KOC-C40510			1
SHIELDING SHEET FOR PANEL				
64063000	KOC-C30211			1

PART CODE	SPECIFICATIONS	P.C. BOARD	IDENTIFICATION NO. FUNCTION	Q'TY
STRAP PEG				
64402200	KOC-C40505			2
JOYSTICK BOX				
64610100	KOC-E30036			1
JOYSTICK \times SUPPORT				
64610101	KOC-E40114			1
UPPER CASE				
64615300	KOC-E10014			1
LOWER CASE				
64615400	KOC-E10013			1
BATTERY COVER				
64615500	KOC-E30056			1
BATTERY HOLDER				
64615600	KOC-E30057			1
LEVER FOR JOYSTICK				
64616100	KOC-E40150		.	1
PARAMETER INDEX PANEL				
64905100	KOC-E30058			1
DISPLAY COVER				
64905200	KOC-E30060			1
LUG				
67200100	3ϕ			1

