From: "Saved by Internet Explorer 11" Subject: Output Transformer Impedance Date: Tue, 24 May 2016 15:38:17 -0700 MIME-Version: 1.0 Content-Type: multipart/related; type="text/html"; boundary="----=_NextPart_000_0000_01D1B5D2.4B1E94B0" X-MimeOLE: Produced By Microsoft MimeOLE V6.1.7601.17609 This is a multi-part message in MIME format. ------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: text/html; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable Content-Location: http://www.radioremembered.org/outimp.htm Output Transformer Impedance =20

Determining Output Transformer Impedance


When replacing the audio output transformer on a radio, the = replacement=20 should match the impedance of the original as close as possible. If = the wrong=20 transformer is used, the results can be low output and loss of tone = quality.=20 Universal output transformers are available which have multi-tapped = primary and=20 secondary windings to match a wide impedance range. =20

It is not uncommon for the vintage radio collector to have various = output=20 transformers laying about that have been pulled from parts sets, or = have been=20 obtained at swap meets. Often times, the primary and secondary = impedance=20 information is not available for these units, and it would be nice to = have that=20 information to be able to use these in a set that needs a new output=20 transformer.=20

The average beam power output tube, such as the 6V6 requires a load = of around=20 5,000 ohms, and the average speaker voice coil can vary from as low as = 1 ohm to=20 8 ohms or more. So, how do we determine which of our output = transformers will=20 match that impedance range? With some simple test equipment and ohms = law, we=20 can calculate the impedance of an output transformer, but first lets = look at=20 the function of an output transformer and how it works.=20

Function And How It Works

A tube is a = high-voltage/low-current=20 (high-impedance) device, while a speaker is a low-voltage/high-current=20 (low-impedance) device. The function of the audio output transformer is = to=20 transform the high impedance of the output tube to match the much lower = impedance of the speaker. This is necessary to get an efficient = transfer of the=20 audio signal to the speaker. The output transformer as an impedance = matching=20 device, works on the principal of reflected load. To help = explain this,=20 refer to figure 1 below.=20

To keep the math simple, lets assume an output tube is supplying a = 100 volt=20 ac signal to the primary of an output transformer with a 10:1 winding = ratio,=20 and the secondary is feeding a 10 ohm voice coil (see figure 1A below). = With 100=20 volts across the primary, there will be 10 volts across the voice coil=20 connected to the secondary. Using ohms law, there will be 1 amp of = current=20 flowing in the voice coil.=20

   I =3D E/R=0A=
   I =3D 10/10 =3D 1 ampere=0A=
For further simplification we will=20 assume 100% efficiency in the transformer. Since we have a 10:1 ratio, = the=20 current flowing in the primary will be .1 ampere ( 1 amp in = secondary=20 divided by 10). With 100 volts across the primary, ohms law tells us = that the=20 primary looks like a 1,000 ohms impedance load to the tube.=20
   Z =3D E/I=0A=
   Z =3D 100/.1 =3D 1,000 ohms=0A=
Now if we decrease the=20 impedance of the load, what happens to the impedance in the primary? If = we place=20 another 10 ohm voice coil in parallel with the original one, we now = have a 5=20 ohm load (see figure 1B below). Using ohms law again we see that the = current in=20 the secondary is now 2 amperes.=20
   I =3D E/R=0A=
   I =3D 10/5 =3D 2 amperes=0A=
This means that the current in the=20 primary also doubles to .2 amperes. Again using ohms law, the = impedance=20 of the primary is now 500 ohms.=20
   Z =3D E/I=0A=
   Z =3D 100/.2 =3D 500 ohms=0A=
This is called the reflected=20 load. A 10 ohm load reflects back a 1,000 ohm impedance, while a 5 = ohm load=20 reflects back a 500 ohm impedance. The reflected impedance is a function = of the=20 turns ratio of the transformer. Notice that the ratio of the primary = impedance=20 to the secondary impedance is the square of the turns ratio, or 100:1. = In other=20 words, a 10:1 turns ratio will give an impedance ratio of 100:1.=20

Checking An Unknown Output Transformer

We can now use = this=20 knowledge to determine the impedance of any unknown output transformer. = All we=20 need to do is determine the turns ratio of the transformer, and with = that=20 information we can calculate what impedance will be reflected back to = the=20 primary with a given load on the secondary. The test equipment to do = this is=20 quite simple; an ac voltmeter and a variable source of 60 Hz ac is all = we need.=20

To determine the turns ratio we apply an ac voltage to the primary, = and=20 measure the voltage in the secondary. The voltage on the secondary will = be stepped down by a proportional amount determined by the turns ratio of = the=20 transformer. Figure 2 below shows the schematic diagram of the test = set-up. A=20 variable auto-transformer (sometimes referred to by the brand name = Variac) is=20 used to apply the variable ac to the primary (see note below). An ac = voltmeter=20 is connected to the secondary to measure the output voltage. To make = the=20 calculation of the turns ratio easy, the input voltage is increased = until the=20 voltage on the secondary reads 1 volt. With the secondary reading 1 = volt,=20 measure the input voltage to the primary. Since the voltage on the = secondary=20 is set to 1 volt, the voltage measured on the primary will be the turns = ratio.=20 For example, if the voltage on the primary measures 25 volts, the turns = ratio is 25:1 as illustrated in figure 2 below.=20

Note: An auto-transformer does not provide isolation from the = ac line. For safety reasons, the auto-transformer should be used in conjunction = with a=20 1:1 isolation transformer.=20

Figure 1

Now, armed with the turns ratio, we can calculate the impedance ratio = and=20 the impedance that will be reflected to the primary with a given load = in the=20 secondary. Remember we said earlier that the impedance ratio is the = square of=20 the turns ratio. With our 25:1 turns ratio transformer in figure 2, the = impedance ratio is the turns ratio squared or, 25 X 25 =3D 625:1. So if = the=20 transformer is working into an 8 ohm load, the impedance that will be = reflected=20 to the primary will be the impedance ratio (625) multiplied by the load = impedance (8 ohms), equal 5,000 ohms. If the load in the secondary is = changed=20 to a 4 ohm load, the reflected impedance in the primary would be 625 X = 4 =3D=20 2,500 ohms.=20

So it can be seen that the turns ratio of the transformer determines = what=20 impedance will be reflected to the primary by the load impedance of the = secondary, and that an improper load on the secondary can have several = effects:=20

The impedance = load seen by=20 the tube and output transformer is not constant. The frequency of the = audio=20 signal will vary over a wide range. The inductance in the windings will = have a=20 different impedance at different frequencies. At a certain frequency an = 8 ohm=20 voice coil may have an impedance of 10 ohms or at low frequencies it my = have an=20 impedance of 4 ohms. This varying load impedance is reflected back to = the=20 primary, so the tube, and output transformer must work into a varying = impedance=20 range.=20

Chosing A Replacement Output Transformer

Now lets = assume we=20 have a set that has an output transformer with an open winding that must = be=20 replaced, and the output tube is a single 6F6. The schematic will = sometimes give=20 the dc resistance of the windings but that doesn't help us know what = impedance=20 the transformer should be. First we look at the chart below and see = that a 6F6=20 should work into a load resistance of approximately 7,000 ohms. What = about the=20 speaker voice coil impedance? If we do not know the voice coil impedance = we can=20 get a fairly good estimate by measuring the dc resistance of the coil = and=20 multiply by 1.25. Lets say this one measures 6.5 ohms, multiplied by = 1.25 =3D=20 8.125 so we could call this an 8 ohm voice coil.=20

With this information we can determine what the turns ratio should = be. By dividing the secondary load of 8 ohms into the 7,000 ohms required by = the 6F6,=20 we get an impedance ratio of 875:1. If the impedance ratio is the = square of=20 the turns ratio, then the turns ratio is the square root of the = impedance=20 ratio. Taking the square root of 875 gives us a 29.6:1 ratio, so an = output=20 transformer with a turns ratio in this range should work. =20

By using the test procedure outlined above we can test our spare = output=20 transformers to see if we have one that will meet our approximate 30:1 = turns=20 ratio requirement.=20

Wattage Rating

Output transformers are rated in = wattage. A good=20 rule of thumb is that the replacement transformer should be about the = same size=20 as the original. If the replacement has the same size core or larger it = should=20 handle the wattage OK.=20

Figure 2
Chart Showing Approximate Plate Load Resistance
For = Various=20 Output Tubes
Primary
Load
Impedance
18,000 14,000 10,000 8,000=20 7,000 5,000 4,000 2,000
Single Ended
Class A=20
1F4
1F5=20
1J5
1LB4
1T5
10
12A
12A7
38=20
6G6
19
41
49=20
1C5
1G5
1Q5
1S4
3Q5
3S4
6K6
6A4=20
7A5
7B5
12A6
14A5=20
2A5
6F6
12A
42
47=20
3B5
6AQ5
6L6
6V6
7C5
12A5
14C5
50=20
71A=20
6AC5
12A4
43
45
117L7=20
2A3
6Y6
7A5
25L6
35A5
35B5
35L6 =
48=20
50A5
50B5
50L6
Push Pull
Plate to Plate=20
  6K6
47=20
6AQ5
6F6
6L6
6V6
42=20
6V6
12A5
50
71A=20
  2A3
45=20
   

Note: The load resistance will vary somewhat depending upon = the=20 voltages applied to the tube and the type of bias (fixed or self-bias). = Consult=20 a tube manual for actual load resistance under different voltages and = bias.=20


RMA Color Codes For Output Transformers
<= /TABLE>

------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.radioremembered.org/images/outimp1.gif R0lGODdhlAFBAYcAAAAAAIAAAACAAICAAAAAgIAAgACAgMDAwMDcwKTI8PD7/0CAgID/AEBAAPDI pP+AAKSgoIBAAIAA/4AAQABAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAP/78KCgpICAgP8AAAD/AP//AAAA//8A/wD//////ywAAAAAlAFBAQcI/QD/CRxI sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bN mzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZszcB qCWodi3Dtmjjyv3p9p/bugrxzt3LV2bduwAa6u1LuDDKv4HtJh44eLDhx5A9Ihaot/HiyJgzY5ys WPBlzaBDO+Ts2GBp0agZw7W4Wivpz5Y3tv0MsXXqpadr0646W3VstrYv5vZ8u+nw0buLE2edXPnQ 2cGhl3a8Gu5a6YurXw8cPOxw7AX9qQPmTh66b8rbFTd3XjH98YOxx5t3Tx59+c5k3+elnV79/Pr9 WdcfexrRB5x58DUHWGcGIohYd199J114CibWIIC94effegRGZKBE4i14oYboqYYWXhkuR6GIGDII W3Ycdghii8iVSCF+IwZoI45lkfZQfBa2+GGQJtol42bg/Vgef+Bth6B69sEYY1YZQphQir79t+GD UZ53pGxThqQfZFZ+NOaXIJ0pWZiGEWmSmmhyhOVhZWI2p0h3xqnnnnz26eefgAZ6InaEFmrooYgm quiijDYq6KN4stmTpJBWWiNulmZaIKU7cZpmo6CGKqqimkYKZ06emnlVqqV6dv0qTqx2FGtQs7Z6 ZZ20+kXRqy3VamuCvNrka0apBrvSsL9maexMyAq3a7MlQfvrhElJu+tEeaKarJz3VavrjMseti2Y UHobk6fZwjousU5aq5K7IGKLa03wZipguDBRe6VpBYI7L7PrIkkZibgpyC+x/uIbbcCyEcxUcvz1 62G3kzIs8VS7RYzwxOVWbPFmVmnM1sXILelTva2iDHB4B4Osm8kef8zaqizX7LKSAys8ksqa8vwt Yy07e63OeMosNG82A70xtrka3d7DTw48ctIzXwuUz5ZivTOTSnftddVMX+3000itZyHVRi4dr9hj h21UjI0FDfbadLXtNlFh/or8Ndl3x2z3j0cdFzfaVvfNE6N/Sx14Xoo37jiwiPLtlJq2pXuk1pGa lh3aZquM+bsc20h0YZ+bGh3nCI2eOlWSvuZn6SzBJvfjRbOOs+iwJz4a6rPXjvHtOOau+5ZU6027 77+ruODw73Kd9tTQ771zyJcG71zlrc1Z5b8pmf383rJfX/3yyrlO/o4O5/sWfHILX3bU39/6oPsY w1ji+TvSv/q+xsfvOYrR0Y7qhOO8+GXNfi5CX/5Q5bz+he9A3FuI64BDQXoxzoCVMp+bbqQ/CcLv gV+7zG/ag8ARdjB6qzvhWTSowPstDoUGrM+tSFgkE1pQRfLjEwvTx0O2/YFPc7uTVw0zxh1hBfEt KlxVCWU4nST2rX8YZJ8QcZegKE5qSgOUS4q2WKYsckt7vKvg+qZovSqmZX1EtJ+TEugf5ompgCB8 nAxTx6oJAlFd+4ohE7c3obu4UVX8mx0IRyiv+c2QgXfUo/VY5CIn2opDg0MhkywHFn3JcY+LnGME 7WSuQ8IwjqnhGiMTeJ0WFseRdGOfAwknmjTah3jt2iQnqwXHMB4vNKjsSy4LebpP9m56yTPaLmVl y1uKyXZOG6acimlMQEZFmXuBppLA6MtfHvOZdpMmEu+4SjMu7ClejJM2L5hCQe7nm1dclO7GuT9y VnM/h7rZ4f44xhf9lpOZqSzcPOnpzrc10JxHk1yn+NnPwH0Qnx6S50AJ2k5k/jCg+lwoQ605OYTW RqE6YSdqNCpQKCZ0RkALp9omKj2ogLJW6NqcSDFKUo4azqMXBVfOlOlS0NT0o+8UaMm6JFGSltQ4 UoRhPm9HyXP5lJUPa2gzBfOsV+5zon/poT/zKFScToxiGfVpVFcaLUrCFHCF7FhWW+pHrpLEfXXE qrbIGiSzArNXNHTr3BgqH6WglYSyhKtW24opl6Q1r7E76r36qtdnyVWn/BysXV8SK8AGVrBqfRtj CVg3yEpVKHelGWQdi8fCIm2zh0XesUZF2tKW9qg8XSxq9cTZzv2uFk2hFe1rn2na2tr2tridrW53 y9ve+va3wA2ucIdL3OIa97jITa5yl8vc5jr3udCNrnSnS93qWve62M2uFg3l1MlKULvbFSFfezWv 2IL3cJXxi1fNe96M+jFLEGzSvShWXgmxt71pea+XylguAWLSvoxrLX4n98HxOFWAB75PnRYs1gFH SL8JHi+CG5wkOhqsuw72SnVWNEQvTXi/HrxwgzO8FSthD4ASrox+ulhhEpe4iZsDVoQ57CqlCtjF /oSYfPjYxhFvOIdBTS2OQ2bJDW0JwYXS3Gkq/KQiD7lHLX7yuDImZYZ9tcqlcjKWt8zlLnv5y2AO s5jHTOYy/Zv5zGhOs5rXzOY2u/nNcI6znOdM5zrb+c54zrOeaVJUJN50z1tD0o0feV9BGQuBkOpz iAsNqChH+UYHemUsuQSlNc5lWYie7YeeuMc+ComvArp03rSsYlAvKXsGtnSP+7TpI1OVm59uJPng ZxadvSh4nialqWn0Z4Oy0aoQvF+sVVykaI6a1hUStq6NrKH/9Pp9v95m1AI0bCbm72zbJVmwl93q Zk/ydY+GZ4FzzeS6YnhQK2odlqjNbWt7O2em3BN7Ge3nbYeYThVkU5EJJWtUt1VKQv7TvKVpx3O+ yd+jTZyi10RvD3Z4m4yVa8OfXHCHzTven5o4jitOyOb9aRzQkOavwUEel4rTkeTZpqIYi41yKBsy 5AFvucxnTvPfLrzm4R20wHHL856LqpXhPu7HlWqnoBt36EH2q8+XzvSmJzmDBP8Z3owu9UDd3LN+ NaiW+Qx1pCO1e++7+rG6Ds0O+mrgXq8qq3X+Vu9SNusnSzStjWhUgcHdb42e+w3VR8CLx/1Rql4r 35njd7zvfMR0HzxehafNZ9MSZoJ3++Lv/tS8Qx5Wen8oS1/G9qFG/vBGSrs3Abr5aXYe2GPN4GVd m9O5gvT0MTW81e3ZesTqBvFvqqzqaS9HbV911WD/++4la1HUvwz44hJ+ojvZ+5GGbo7Bl32jmR9D 3/0PDXaNtxf1rwzW0ude+YA/2UFrH1HbnyT7WUNvIk9qfcNFv/LhT70U2e/88r+/p/Fn/eib7/3Y P1b6Avd5r8Z/EGV+3weAr4NIDld8/ud63aNOEUcqXzJM3uM/FBUl8VR/mCd+l6N+IUd/J5d8ugd/ FmZvJSd+1KR5MHd+mDWCnoQ/tbZ9vZM7HAVJKIY5cLNEUIVPNPgcECdyZ/WDMCgz+8ZMjIc3CwiE QThyQ2hl/2SElOdDIaiEbedNTUhk4vVy8IV8Vcgy3fRTl5aEV5gmYrhBXLFDxMZyS1hQ1ad2lTR+ L2iGm5KCUziGvKGDMBhV9+eFpLdUsnKD6RZz/WuyfmWIcWRUbJ2jhV2BhrXUPNzUh3okdkIohwC0 hvNXiKvXfZcYGYxYRYwHhwT4PR33dkqoh7LFL4koJcgCN1ZkbB02hKXEequUG/hicqZIhjg0drlI Ongoh2q4d6GYia0IPLBYRF1IdKDDVEC2Qr0Yb2kHgm4YjePjiwxiiSP3f0m4f2PBRYq4gh7XSypo iNKoPNQojP0Xest4TQF2jcxjQ7UHfYlEik1oVhXYOei0id1FH7wGe+ITSMUkXvHYd6roSV1FiASZ OR9oIjuGgaE2jMvHjm0IPpnHOqCIao3ERpLIkDbDbowUeJWEfwEZkX64Qgr5bybZkO6iRkT+0pEA 5x0gOTJfOJIxqGwY+Wn1opI02SDiqFnuZZDh6HjJWJOZ5G0pGWmVpiVURyUoCI7BmFlSyJErCSA7 6X4bJYMMaI14h2RIuXXnmBnPBo1giJUvqX+3QXCgKJJheYwCuJZl6YH5Bom/eICdYpYdKH+oCJcr J5cPCIHkxZcyskusiJfp9nQNg41jOX12yYdXWU/td4+HGYBz+YiL+V3LZJiJaWhLmV7kZ3wOqJeX OXtlM5ls2JmO+ZmIyXvcx5gaWJpseZrEF45UeXszFZQkiJmhuZkNSEbwyJpkCZqvCZue93uh9zno l368h5axOU2CqJZnpH2/CZyc+Xz8SJn9CJiARQExF6iMbzed1FmbOqRS7LRk2amahoV7zJl4eRdS NOVV49mdeGWep9ib8lZWNCV5zAGf6uid8/lv+umZTRVbxWl1/PmYvJkwltma83lu8umfvIR9Lrhz kdWcWEd4Dgp+EIqfVUebfRc73FmZgBeh6KmLmzJaGSmChrabC1qgdJGUiiegHeqhB0orLGqflid6 abk1TpejOupzB2SjMllyMxpcLwqjnBikQhqgRVeiELqjTNp0QOejOBelUjqlVFqlVnqlWJqlWrql XNqlXvqlYBqmYjqmZFqmZnqmaJqmarqmbNqmbvqmcJpl3IWhcYpZlUinazindVpv46N4cKUGYnta gqJ4YvzWG4ZKaRb2p4AaqDT2Ijo4Y200SukoVkOqpftmYP2FqdpxlIlIY3gapz/mYZo6qo5qOQHE lYx6YJ46a6TqqfdmlJ8KpyYGiKI6XosqqCBWqVk6qzGmZJB6qzIGq7HqprzKkKn2YR4GT66qq1bq aIeaJPOFbLhyqsCaqgnTofLFb9bKUkC5rcjprVrHrOA6ruRaruaKXQEBADs= ------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.radioremembered.org/images/outimp2.gif R0lGODdh9AH1AIcAAAAAAIAAAACAAICAAAAAgIAAgACAgMDAwMDcwKTI8PD7/0CAgID/AEBAAPDI pP+AAKSgoIBAAIAA/4AAQABAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAP/78KCgpICAgP8AAAD/AP//AAAA//8A/wD//////ywAAAAA9AH1AAcI/QD/CRxI sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bN mzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZs2jT ql3Ltq3bt3Djyp1Lt67du3jz6t3Lt6/fv4ADCx5MuLDhw4gTK17MuLHjx5AjS55MubLly5gza97M ubPnz6BDix5NurTp06hTq17NurXr17Bjy55Nu7bt27hz697Nu7fv38CDCx9OvLjx48iTKwcLoDkA gc6fL2xu0DlB6w2l28S+3Db1gd/9p2u/Pv5feIXnE5ZHuL4i9fbdY4eH/zB9evb3q2ffmD++7PnQ fWdddNJhFx14Beb33HzvLTjgfQQ2aJ6AEk7Y4IUBOvjghBl22J9/jr0XIIcWmsehhBWiuF6CCJKo YnUJaujigQKOmKKIEb5YIn0gMiYieSO22OKNFkJ4oI0sVggkiUuqOJ6O571IYJA9WhalgU/G6OCM TBakHYNcOhnklRQyieWJLA65pX08VtkYmGWqiWaYBXrZ5JZzGkklkT+WSaScKVLp5mRkRpihhhsW WSJ5WhaJIXeMHunog1MqiiWFa2Ko6KCcdurpp6CGKuqopJZq6qmopqrqqkFVyv3qqyKxCeusHdHX Jq24MtTmrbn2aqeuOQYr7LDEFmvsscgm66thvPJalrPL3tWsXNBGW9e0cVVr7VzYwqXtttROh963 VZELrrfqiXeWuee+Jau6ZrHbrruSjitvVPfO61e9YuWrL1/8huXvv3m5OtbABEsbMHMJQ2Zwvw0/ 9rDAEb9pKFkIS7awTpCGePHBrMWZbn36afSjwwt2SbFqV6IH0Yr8ZYwXjjIjVbPFQG4YrIeIIjil ponSSCnPOsfIs7c0P7tay3PmmWSaQg6NaaBOezgplCe3NaDKDLOcJZJg+wn1mCs+vWjYY0t55Idq 1cj2Vh+PxjSfeP4ZdZZi/vuMtqBqe3kzVW6//ZXgmYlMN52Ccgl2nmQ33TKUiWsd+N9MUU5YvYbm 6PPQm3O3s+aWTn005xunZWDk63pnuWgAco3W6hrDXtrYbdNW+m+yO5V7xV7t3up1v/IemO9APRm8 8H8R/1PcJiIPmPI8Qeq5888r3Tx02F8fMuHAQZ/Tl8Cj7rVE0Hq/L8jghZ/9a9yrryvLB4OfvviY FV33pUcferbQ7WtmPk51ml8APXOjojkua31rXv/8Fy8yzY+A96tapRSEKBkJCTX/49jDMpitCCbw gjkrG+1m9zr3aY8zh4Oc6wKVpgUWroQPXF9nhLUj/unPbxaUVMdIw0EA/W6QeslrIN5kCMS99JAm A1TgCYtYMIzFUH5MBJj1jGeiI0ZRKVacifRqdEW9ZBGJP+zizGBIxC+KcShmlAkVY3hGbpHxhGls 4/JeF0Y5uvFZDiSiHd01xfClbI93RN8aXQjIlQlSfYQs5OD6KMAl1iRZkIykJCdJSWItJ44u2SIU b6K8RALwknTkFyYdORJPchKUqWPjKDs5SvKpsZKwjOXOsPjG8qwyJbf7XUwyuMPkZI6Nj8RlL4ly RF6a8jaa/OP3hHlMJKrxJcMkThKNxjFmtvJlz8xkM2ezyS+10nfMK0oxoRlN4UwTe99ESTiJmc2W 5LInmsQh3hqlxx39TSWertOiOi1os3ay5J3wtOU8YbQkrolMKsy75Uk01c9darOcyxOoCf32RKbV U3cmVGhJKHXN/TjUnRMTyrtuSNH14Yl++KrjKU3C0aSsc6ID+x9DxSnRQ1FQe1DbZkSHeFF/lrJO On2krUqGEZnyk6YlTWrOIuXNq5xTictUyUkxehCYZcR8LTXKSI9X0OuBqVxPBOFKcQlWogKTIli9 UEfHlVQuVnWNZtpk5dwH17Gq0ypWnShaQYrOteKHQaJTjzfpuamntM6k6ZQqXs3a04j00K9vkmEA NXrXxcLUZB+9ZB5J6VOWOpWrnHVsZruT0GpudFgIBW1MR6tZVf2aNiQdEyhkmWpL1WL2n6hFTl0p yxGIwsiveiojY90j1Sj91jiljWqtLtJRHiVxiatl6QJ9Wxt8JjZmV+XtW4cbXZLca7bnwyk6d5Ix mcXRWXk960Rgt82gktd64m0sQcl62+Vu51YQGu5eY2Xfe8ZLsuMVbEhLWV+PnNdlcNSvPC0J24+A 15VCZFQ9c1tZ5hKYk2VzLWi7+s8GpzaUsbUpQPlrYe9+T6XQxQ9rDfzhVJZxljD57kLRaFsFK9bE UHmwZ1Upyx7DeL30LV6NN3zjjebYdBllMDvtBVgg31eUQ1ZvkHfcFB2fFsq0HbE+s1Pb/b5yvunV 42OnvBQr/cdqs7YCHTwdYh/idhZ4YU5wjN/qufZS1YnxVaZ43HthLkvZo3MWF3eJTGYOd7fM/41v PhvKZrlCONDsSTFXx6xivTp5roxE7JHr89xLxzjDks7ob6lbYsH++dG0zLQSzYxgToeWzULFMjC7 HDk+E3pPva3yutBsWMfq2ctrvqyd2GZr+bq1wC41HYpT/bKvoTp6UUappUttavPqupa3Fif5nC3a OQo726cGtoq/5dxru1jO5nZ1UWMd4m+LdWT9Zeuzwa3LXcsa0+5Ra7c+PV90z3rRALdIs2Q7umiy 2sa9y+PBI81cswka0lUNtYZrbbmBh3BxxE43xPL8am39N3xxrYYmvNwN3QHnetuIA/jCp82VboZb qx9vGrwhvt1oc5Bch1O5xldGxV/je72Zy/ib0xdnWmcS6PM8KsuXjEeerjziRd4lqP0tXJpTGdEg bvOmZ/zkdv+b3n2uMNbPbfSdh90nZZe4OwudbGwv/Si7e3Da23NztjM60VXHl5F9eG+1y/fqZx87 3qneaxLfF8yDrvnRcVx4sr+d2Sy2q36KLu+1Gx6LjkYfgC0bb2c+nOR0pjBIKPf0C5Ye8IDrfDDT RXlqj97BhpVfse+MlfZeM7itF/je+ZNj2Z/ewL/Hpu536nUxr/u02U3pZIPfcFLfc7qz7zDo5315 T/3HHqjR93iE7dV447veu9BnfkmVbsisvxTyfqf+laF+tnJh/9xsET9j46z+hYreqe8ffPw5//Xh e77l+QdfWsN/3ud/WwaAJIVnbiF/Z0V/3cZvHYdQagV/a8GApOSAwgeBU4V/5LdxykZ0wfchGEgy Upcy2adB7aeAdASCmAdRIwhrJVhFFjhuJ6h9odRX6Bd15FRYWTFTKmhvCQhzi1eCWlZlHVh+K8iD Qmh5RFiDJxZwvRN/1NR2TNiEXaEk+geEzgdtQ2iFALiFPSiFR0hjXfhpYFg5RRiGUpiCSyh9WnSG J0ZqaVh7kgOFQlaGZrhwW/VX9gaHtTeHr+WG/a+khzNHZ0JkcgIDiMqFWz7WiJP0fwyHND92iD+3 NIC2gDSkbKc3g1qxb5IziQ1kdhjEZY5YiqZ4iqiYiqq4iqxYLOxziZ+oZopEh+/TQec3i/4VcpLo h7hIhQjXi/6xh8DYKYg4jMZ4jMiYjMq4jMzYjM74jNAYjdI4jdRYjdY4emzCi8Wjjde4Eq7CjUzV OftUZ7LjhH9VjM13i4qXXbJFQeaIQmmXb7jGV4+XfNJ3bNjIYewXVN94O++4GVpXK4OFW2BXVFg1 JuCnj7+IVjnVaMNxWMByflNTKIuCOWAIkUg3YICVQ8kUc8j3bkrlYAM5ct2TeVdliKbXODL+55B/ h10pqThYCHQSJjVCEynrSJFXM1giZHIT2VQKyRv46JL9ZiM1l0hBeWYURXcjxJDjZzQyEidKaTBQ 6ZMHRX1n8pNA6XNMtjHltlTiaIfjZpAvJStJJ23qdjd800IiuIFNiZZguY5Y+Y/wGIGPRndJ6Zae lDUwKJNeCZMxVVMHZTj9UZWOsidquWDD1JVwWZJY2Wz440hz00J8+YAop1RT2ZKVp5KRKWH9tplx pZJ1yX5DGRwWlW9rw5XtiClMyZn2Q25SmZpTKI93kpYIuUIj6ZcyCJqOqZpeVVMPyYkglHNy2Vuv OUs2FDAXc5qnuSmAmJwW2TnAaYuFKYFBKTec3ehDIBd71Rmd12lqK3l94QiO3Ql3DjeevqE54mme 6rme7Nme7vme8Bmf8jmf9Fmf9nmf+Jmf+rmf/NkXAQEAOw== ------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.radioremembered.org/images/outimp3.gif R0lGODdhGAJrAYcAAAAAAIAAAACAAICAAAAAgIAAgACAgMDAwMDcwKTI8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAP/78KCgpICAgP8AAAD/AP//AAAA//8A/wD//////ywAAAAAGAJrAQcI/QD/CRxI sKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bN mzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1LtqzZs2jT ql3Ltq3bt3Djyp1Lt67du3jz6vUIoK9fvwIB7x1MuHDGvgQR/1NsuPHAv5ADM3Zsd7LiyZQbWwYg OfPdzZ09Owa9mLNouoxTcwYsuDTmzIJNnyX9+rRbyLJLh75sunZh1bnLqn68GnHrv7bJDt/du3lo 2Ll9h8Wd2Lnu69KTZ6VtnTfygrj9w4sfT7780tfBlctezpu59unRu8vnmb6odNbNN3u/npS7e9et VVfegAQO+N5J/mFn3WI41UdUdqwp+B9+SiXYHn85OXggR+NJ5l1sAdakYUoFRgZefBdOOB+GRlm4 IoM3jbjhWzIiiBFmy3kI4ncp2ieejjp+mOGMeNVokpEMkYYheun1SGSST1YmE5ILKWnlcy9GWWVU sWnZEZUjgVnldwAKiGJ+xYm5oZo9Aeclh1O+ed5TSsp5EZsf4WmniE6ht+eNcf7ZYp8aUlgmcftl d5qeXwo6aEwlkkecQhFeaKlxjOaV6UabOtpSp4dxeuZzEpbq5HvUUWoQqKB6qv1Sq3eKeuKkiO4I Iqla3reqRrC6iqCJCTXJK4fx0Yori6Xa6aCwofp6lK7gDSursVfyl6Wc9TELqLNILbtrs8QeFyCZ hyIX4pvaPiYtt88elK5FvbIL0rswbivvo4l9a++9Q+YbLbj8DkUvqwHrFBy9FMVbsI3+NhzrwjH+ 6zC8EAsssboAV/wrufUGpu/DGv908McUh3xkk+td7HHGJr+UKsYwx1xyyyKN2JvKHc9M86coy4zw RArvvDKlA68r9Kuq5vyzREHvjGTRLB9dUo1+4pyw1F9SDfW+WJP0NMk5V9S00DYPbfbZ7hbY9a9J bg3y2rz2fPbSyMINU9lK/oN9td3hhjiy1XXzfbfceQPOtOBH4pwt4hkCO7feQDPuteLuSi7U3xOL bfmdjhee+dib50l51KG3verNo2deuksvP254RKDTXLbbYa/OEpNo0w1R7CZTXbnKvNu+ZbBh6/5Q 8CHPDjbmwq/k+/JtE9i8Q7gXTzLKHE8PJ/G0z6p93zimbnb13xN7eu6QK1p+o5/vCiHym7fuucxo rx+m+MciBP/3zNe///r9q93X7De59r2OgEDrXAAJNzwEhmSBkHMg7AgHwWi9T4Kc41gF6YdB2KmK dsXyXgcTeD7XTex/kpNR1U54uuyN8HgfhJ7qXtgQFYKQhqIjmgzpJz8c/dZOXTf04faCFcRjqc+B 5Ntg/YSoOe7tEIg2Q6HsFIi/HzKRhCJUYv5+d0XiGXCGXUygBqtoxQNeUYtLDOMQ0SfCBvpQfmgs oxozVrQLCrF63dviHGtIxS+Oj4E4VB4ZjbVHPpawiLU6IgKfN0gzdaiQgvSjHNUYSR5yrYuMlCT2 ziWq8Hhod4rUDh6fuLc9VpKNMSMfX0IYSj1GCY6NhGEhkXUZUjLIjlmrjivTVrA4enCWQerfwAZo Plq1MnC+8uXugFlDMhJzWtZaz7hu5Rp2KVOWwISlJJF5okj9yJGsnI+l7nVN6mWTglUsjg5XSS25 4Wg15LTl4SCZNC39hlCX8wpnInHlQk/l8Zdz1BopN3lMpunTVAdTJ7cWZ0YoMTNpmnTZQS+1slP9 yVsNdWMYBYo/gjbtkTwyka0OddFCRRCbAa1nR/HJUkz205JvCyg6t6lQ/UlRdi57qDZh2lKI3jGn D/Wp9U4Kxg7eNI1BnV/unvlGoCbsm5wk4lH3slNUQnGdZ3Sq2A56vKkWyZ0D7Sk3UbOVqW4qQV2F 2CmHysPOUbWbPZTqTsx6I65Sz6t1ySRPkaoZDd7TdAbT6lPbWSszMQevcFnruxC7HVWGsqAkEqwY p6kiU/USrCsVZU1J9VjG6k+ikeIlltyZ0Em6qqps5eCa/kout/3y6VlcFWlCIWvNdKKrdRQd6926 NdFrYQprcfSsV37rvdz2q0W9ndB/yOZMLzkpVRb1pnSli1xPlku2aCKpvFD7M9oOJke0XFBShTPT vZZwtYii1nLHOxbFEhVA5vkudrObSOGyV7JttKrO7svfeRJRnpHrJF/7i0H3ZtShdU0vgV163nKi FF5/XTATuftecyb4wBL+6TZLCWG5Cqmw1fRuho/mYAtzjmjwzG2i7Dvi0fTRvE08MYhdVNkWr22U sVzmhQlb32Cu18bMdWKOH7xVltbJiOIFMk41qt8Yy3i0RsbSj5XcMgMXVcdxE5d+RlWmqFK5Yjje cIC/rGQK/WNYqGROs88q3Ew1u3nNZ/bixvKj2zcLrsRtPtlhTWtnu+EZwVO7Vp9L90//BnrKg44f gA063YIaN9GhY+iVGyRoSCMOo5Om9IctfWmTxpnTZX5pk0GdaCoZj9RpNjWb50zntKUJ1cAlsn3D 9986wzpgqv6011K2ThHf2lG5zvSreF1rX/9aZFcJtmoHpzRxjRZT0K7msYHiUS+30CYsTnByEWqt ZU8b29k7MlZnku0d11jFry73t10t2l2Kdbd0mi010R3idfuEuC3tLLah8s5Dvsii9r4ca6dp7dvx u7QVXRF71B3wuzqO3q9lCm5tFVK0NvxBmz23vBvNcdf9XtzPSYZukj/eYvDikeEk55ubpJyslGdY 5JuGL8pdTvOa2/zmOM+5znfO8577/OdAD/rNQWpsoU/YrkYnsMWT3t+lM/2+OYq2lmf+dGdNXONV 36g0jalwqmcd2Nv+UG06TnaPf11ZYR/5vs9+2rSzfO1sL6l1Kz7SBsXdxl6/e5DjjTq9oyveCva7 cwFPSME/Ke93XbXhYUMoD9MXSCFG/OIDNTiyF76bt+z6J4s+eawgtlVb5qzmW955tnwemlDuscwR XXq0xFXMhja3yQFJ+tbTyNPCBrTst67ebtfe9jT6rK4V73DgcBny5uI88LUiaW9jefl+XjRAoQ+3 Qv1Pn/o3HrKJsZ992F+f+1L7M5PBj+sXj3rM5C9/g7Wf5/TH04viR7P7kwlY7z9//vRv//ljj39/ ctT+RNZ//qRSALh9AphM5bV/33eAbTdGBah/DKhW7Kd7Ebgw8SdnFdiAfjOB45eB2IJZD0iBHvh3 QhaCHTiChyeCxlMiKHhRMRRLyteCBxJmMOZuMmh15pdazkdV0NaDxlZwDpd4W4U9cXM/Qfheksd8 zbUovAcjIqZ2WFR/YmIc/sJ5MUh8K3SCg0dTyRF1Ngh/rMImU8gsV5hPE8RmZfhdttWFC+Ic+xF5 hkVcBLdyCkJnkeFJ+gF5XaZQc2iHyadOb4gf/YYSTX6ohxizI79nG2bGQpqVefVyh3zoV0GiG6Dx W+0hh1RIUcXyXGgCiJtoh3UIiXXoiPokdpT4N5gIT7b2Gwmog0kIW6Q4KT7YGf12ivClS5YoXj2i ibgYcm6YJpWoi7+4JMLYMbWYiywyjMn4iu1SgubFjMhFSMjYi8Xlibw0jR+GVv3GibSYcd0oet+Y jQjXTpdojVUYifm1KGMSVnCVhmAxe7bohBlXjthBjZgYj9pYWtxoi7Uki8XIj+ZYi1wnIdM4NPf4 bp5hQ+yIZIQRdVK3YmfykPKmYH8Ic6+2VI+3eoIIV8hHHRLJXdLkkbP4RxnpjmthZZaES07+EzvI Y5JW45LnhSqtOEwG2DtjA4Sol0+YNjWvlIMIw1TJg5ODdTIwCSGJc1rpBJQ3uF22pZJLKXcbGFGX B5NP+Rkg+IwtJJRVuSYvKJVbWSHJpoLXk5VUqSm+VpYCopNHiHlrmSdo+X2PxEcshpImFF4I+GT7 9V9GIobP4xutVJTC5VbiVmvgdki25I0I6VynZ0g1yZj1tCxgApjgli0RNm6TGZUwpkjQOCWI2JGF eF1+OIh1t3mt1lrvFG1A8oekmZUUSSHHSId0l5apuJp6qJXs5FimxozB1ZiJdTPIiI3JB5CbR4mz 0o/7dJDfaI8BuZyqqJwI5TfW+Jt82I79rumGzvmWoJRvfWgwPrk8StmbIYlv+BiddkWFvUiZwlk3 AhmP/piIwqmJ+miaAIme4nmJymmbrEZjq0giMwk9TplX9fmJ4RiJ+2hk27icHIlPwemcyCSd7nGg HIlv0Dme4JWelGaX3AZ3v2NPYoWdUqGM03mPDlqgsshP5AmOECqHAwqOKwqfxembJ+qL79mEK8pn /GmiIfWFKPF/WEmd8gWbK7eRkGhdPkOkpHmR0jaJqamaR1qbKQOkTLqH4QmMCpSLVLpmdCgiNHpy Ecdki2U5m6mFD8JbgZcaiFZ2ZVd/PQpOKxmmGNgfHpo1saldr8c6BLimGBqU2+WmXP7Sn5Tzn1+Z K92pON8ZqIKymxBoqMCWlLypqDM4qO0DqI4qk4aZWQzZkHHalmxHl0q1eg2po8Omd3qlX3xKbaB6 o6LalXiakNX5SQmKiLP5qgv3mUFHg6TaiLcYoB6TiqIYjONJoTZqc4tYgy42oATnb/NZJyKKjouH RqXaJsN4H+JoodpJkMxqeIgqGvRonPL4q9iooN56rfvZc9nKqqoJncYXnBvJltLGpGSSqakGqaoF r5Pam+vnffRaryepqgoYTHGpr9q6jhwofwCrGQJrggRbsL/BrzroZApLGUk0sG/6sBArrwPWqBTb hRIrfHHxrvgJp//zsYwWeHIJZv0by0Udm6U1c3/Buo4oVJaDaZlQSWvEyn+3obIPxLKgd1MwW5kH W1KVirATexvEGYhWSoyFCFVWOqVHC4dSepGCCJxJO6EQeYqb5Kqh6KqDaLWhmJGjwbCnlqhtAYjp KVvGiI7bCqIIJ6SdWI9lm4l4SKDt2o7vyZ71uKxv25zW+qstOxej2rAcllhFW4rW2Z7hurfLeKlN W6O+OpI4a7eWeItliraeSE3VmLeKCLbEN7RjqyL0aKKIC5ykt4u3EqQI2p7iuYzxuaSOaFMIWpD5 87noyoRBW7ML2Ll7+7mJK7uvK6PRlLsPKq4O2q0J96J8y63RmrxuO3bR+i35/sp8Ftu3HAueVkul 61o86Wq9TJukMse0PigkdVedUDuaTSqKWOuk2TWkhvi0cyeyXyu00ztZ2AVKz8q5aaUxdfpKJ7u5 7eaeNjUV7nt5uJZ7qLK/w1et4/q8u5ZB9VtWoqa/8IuyRTaQ2ZmxVmF9LBuFDhl6o1iVRNfAXHgY Had6WDdOhup0cyJ9oZp6CqqPjorC/RG/0vtAsZWjhqWoMByNMuxZ+smNCoxiI8sziPeWAXy+sAhl 1/vAoKUoYatnFKxirMdskXmq7NQmVBxg3gWFAvNwo/fDMjyxn6e0YleaUVuYv/S8XiyCKzuu53ge TQhxabxqTWwY7iqhrcq9/Z45YyuWx5G3tRW3moYydd2rtbwqm+MrtbS5hx28tTHidp4aMTUJwtTG nGc7ibpKijHatsNbKXq7yXSXycHbtW6bXoGsyXIbTndsdpzZwjU2V7J2eKd7uSOJteabnMO7XuaJ ompbvfOovPPZv5XluOgJucrYOKycoTPMk5EMy3wry4iZyMSYuwTqu9JIuTUKum9LiG1kw7Crnmqr u5c5Xz6mXRrqpcyMnKysoocYojAqzdncU7WEt2W7vL4cuYlry/Ucu8oLzlx5WagZbuqLriE5uaGZ q9/UVgPdx2yb0IMMq3A0ddbbx+urkd+LmjMiySSmcxg9RRvNP5YWx+z+1dEWzMDQbMUjPRvyobfR g6YjfNJm8WguDWaVFtPq57861VkiDaYzPV5/mdM6HXP81dM0bU2tlqRzOtR7MqInmswhfdB9Nssz 6tMynZhflrrqytB2FrNkpqIjGsV457NbncQVCSwg3TyzmrXnuqBIzYammWLF/KSpu9bQwWPBbJ4A J9d0XJ7iZNdajNeYeszLlSJ37dfyBdjJIth9Tdhf1b4c7LlIqtiQHdmSPdmUXdmWfdmYndmavdmc 3dme/dmgHdqiPdqkXdqmfdqondqqvdqs3dqu/dqwHduyPdu0Xdu2fdu4ndu6vduzJNW8fZS/vdin qb7peG1PJdL/Wtnm59Idl/qzBtWlYrrNASTXVr0bV3zd2D0vAUiYyejZ63mGE7zKjjneNLvZEGrU yx2eN6ykCQqao9jY7Lu+4txuWajZp5mhpIV1dolup6x5iL1UFOyj/lrWAviaeyZapwLT9wzHo0eO /3umNHqxkW3g2uxvHjtvgMTgh2W5ojfMv3dkvl11FJ6Hl1viCb62XTxy353eAY7AOyjZI446XFq8 yGxM+m1czF20DCmu1XzAMW2RDZ3eMWeRTMJlY/3Px8p1fqne1FnEwf3kUB7lUj7lVF7lVn7lWJ7l Wr7lXN7lXv7lYI7ZAQEAOw== ------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.radioremembered.org/images/back.gif R0lGODlhWwAdAIcAAAAAAMPP24KaslFpfXCAkL6+vi9PTy6LVzLNMgD/AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAWwAdAAAI/gABCBxI sKDBgwgTKlzIsCGAABAjSpxIsaLFixgzaswoUIDHjyBDihxJsqTJkyhPdkzJsqXLlylXCthIs6bN mxUBfJQZAKbPn0A9DtDpkWfQo0hPDt1JdGbSp1CFNjUatWrQpUWb9oRZoKtXrl6/Cuj6USxMrAKo cgVJNmRbt24LeHz79uxUrT/lltXLlu9ekXrb+vWJVu1Lv3XHjh2cuK/io4Xx+gzbuGzfwZcx22X6 cevauXX50q0M2uzPyJ3zOt4bdvVIsqY3Z0092TVj0ZpBlwaK2qPnw7bjuha+m/Bd2ocp446LuHXp wM5d9nZqtbrstJKta085/ff27yO7M4MfH/64b/LoP3YfwL69+/fw48ufT7++/fbmsTvcz7+///zp BRiSTAIWqN9/CCao4EEBAQA7 ------=_NextPart_000_0000_01D1B5D2.4B1E94B0 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.radioremembered.org/images/home.gif R0lGODlhWwAdAIcAAAAAAMPP24KaslFpfXCAkL6+vi9PTy6LVzLNMgD/AAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAAAAAWwAdAAAI/gABCBxI sKDBgwgTKlzIsCGAABAjSpxIsaLFixgzaswoUIDHjyBDihxJsqTJkyhPdkzJsqXLlylXCthIs6bN mxUBfJQZAKbPn0A9DtDpkWfQo0hPDt1JdGbSp1CFNjVqsoBVqx6vXgWpdStXrSO7CugqVunUpj1P es26dizWj23Lwo279q3JpUXRoqRrty3bAnP9gg0MGC5KvAKoVrXrti/jv4YHj2389W3hw2c/pl18 uXFhyYSzQhbNF/DjkogVlyRbFvTfz6M/M2bNMrVetbO9uvYsGrLszmBPk7SteW9uy355T34duDLs lMQ9bl59/HLyupWbh17eeWR0p7iBa9d9HPdr9u2G72aWblz8cfNcQ7p3rh31evDUdct9TT65Z6ys +RfSd9NFZaBPBB6oIIL3Fbjgg+oxVRyEFEaYl2YDZKjhhhx26OGHIIYo4oga3ufQiSimqOJAElbo YksyvShjSSvWaOONCgUEADs= ------=_NextPart_000_0000_01D1B5D2.4B1E94B0--