
Interlace WILLIAM BARDEN, Jr.

Microprocessors
You're sure to find the information provided here a great help in designing your own

microprocessor-based circuits.

MICROPROCESSORS ARE BEING USED IN A

variety of control applications from lum­
ber grading to automatic bartending de­
vices. State-of-the-art microprocessor
IC's are easier than ever to interface to the
external world. This article describes
how to interface several types of popular
8-bit microprocessor IC's to provide TTL
inputs and outputs. or to control relays or
high voltage devices. The information
you find in this article will be essential if
you decide to design your own
microprocessor-based projects.

Microprocessor structure
Figure I shows the general structure of

an 8-bit microprocessor. The CPU (Cen­
tral Processing Unit). more commonly
called a microprocessor. communicates
with external memory and 110 devices
along a bidirectional 8-line data bus. In­
structions of one to four bytes are entered
into the CPU from external memory along
the data bus. The CPU decodes the in­
structions by executing one or more ma­
chine cycles, which comprise a complete
instruction cycle. During the instruction
cycle, operands (an operand is the quant­
ity upon which a mathematical operation
is performed) can be transferred between
the CPU and memory or between the CPU
and 110 devices. All data transfers are 8
bits. or I byte, at a time. The machine
cycles are synchronized by a one-phase or
two-phase clock generated either outside
or inside the CPU !C.

External memory is addressed by a 16-
1ine address bus output from the CPU. At
certain times within the instruction cycle .
that address bus holds a valid memory
address . The address represents the

Photo courtesy of Intel Corporation

unique memory location to be read for the
next instruction or data byte, or the mem­
ory location that it is to be written into.
External memory will perform a read or
write when it receives a \'alid memorY­
address signal. the 16 bits of memory
address, and a signal indicating whether a
read or write is to be performed.

Input/output (1/0) devices are ad­
dressed by the CPU in two modes: mem­
ory-mapped 110 and I/O - mapped
I/0 . Memory-mapped 110 is used on the
6800 and 6502 microprocessors. In that
mode. the 110 device is addressed exactly

16 BIT BUS

8 BIT BUS

MICROPROCESSOR
8080
Z80 TIMING
6800 AND
6502 f---·CONTROL en w

SIGNALS z
:::;
!:e -en "' w ::::>

z IX>

"' :::;
"' e w
a:

"' 0
::::> 0
IX> <(
<(,_
<(
0

-

FIG. 1-MICROPROCESSOR system structure.

as a memory location is addressed . and
the same signals are used to determine
when the data and address output are
available. In that method. the 65 .536
allowable addresses on the 16 address
lines must be divided between memory
addresses and l/0-device addresses. Of
course. the major portion of the data goes
to memory addresses. because there are
usually a small number of total 110 de­
vices in the system. In the 6800 and 6502
microprocessors . consideration must also
be given to page-zero memory locations.
stack-memory locations. and dedicated

EXTERNAL
MEMORY

DATA
LINES 1/0 1/0 DEVICE

1-----+ DEVICE
INTERFACE 1

i t
I
I
I
I
I
I
I
I

~
I

t
DATA

1
; 1NES., 1/0 1/0 DEVICE DEVICE INTERFACE N

'­
)>
z
c
)>
JJ
-<
CD
co

"'
59

(/)
(.)

z
0
a:
1-
(.)
w
....1
w
Q
0
~
a:

60

locations for interrupts and other system
functions. Figure 2 shows general mem­
ory architecture for the 6800 and 6502 .

HEXADECIMAL

FFFF

FFFA (6502)
FFF8 (6800)

200
1FF

100
FF

0

DECIMAL

65535

65530 (6502)
65528 (6800)

512
511

256
255

FIG. 2-MEMORY ARCHITECTURE of 6800 and
6502 microprocessors.

The I/O-mapped l/0 mode is used on
the 8080 and Z80 microprocessor IC's .
Memory-mapped l/0 can still be used on
those systems, but both the 8080 and Z80
have special instructions to address l/0
devices for input and output. Those in­
structions allow use of up to 256 different
l/0 addresses while retaining the 65,536
address combinations for external mem­
ory only . As in the 6800 and 6502. certain
memory addresses are reserved for sys­
tem functions, as shown in Fig . 3 .

HEXADECIMAL

FFFF

100
FF

0

DECIMAL

65535

256
255

0

FIG. 3-M EMORY ARCHITECTURE of 8080 and
Z80 microprocessors.

Whether memory-mapped or I/O­
mapped l/0 is performed , data is trans­
ferred 8 bits or I byte at a time either from
a CPU register to an l/0 device. or from
the l/0 device to a CPU register along the
data bus. Each input or output instru~tion
(STOR E A or LOAD A instruction for mem­
ory-mapped l/0) requires transferring I
byte of data . Since one such instruction
takes approximately 2 ms . and since

. associated instructions in an l/0 loop add
about another 8 ms, data-transmission
speeds of up to I 00,000 bytes-per-second
can be accomplished be means of using

register l/0 of that type .
Direct-money-access, which bypasses
CPU registers, is a faster I/0 method that
allows data transfer to be. limited only by

FIG. 4-1/0 DECODE for the 8080 and microprocessors.

FIG. 5-1/0 DECODE for the 6800 and 6502 microprocessors.

memory cycle times. In this article,
however, we will consider only the
simpler register I/0 implementation.

In the I/O-mapped method, each I/0
device has a unique device code. The
microprocessor selects the I/0 device by
placing that code an the address bus . To
transfer data between the CPU and ex­
ternal I/0 devices requires a programmed
I/0 instruction, detecting the I/O-device
code by decoding the address lines, and
detecting control signals from the CPU
that ihdicate when the output data is avail­
able, or when the input data should be
made available. Figure 4 shows logic that
is required to implement I/0 reads and
writes for the 8080 and Z80 micro­
processors. Figure 5 shows the same logic
for the 6800 and 6502 microprocessors .

Discrete 1/0 lines
The simplest type of interfacing con­

sists of reading discrete-line inputs or
writing ,discrete data into latches . Dis­
crete data represents "on" or " off" dig­
ital data. Reading 8 data-inputs is easily
accomplished by gating the input onto the
data bus at the proper time. The inputs
must be TTL-compatible, representing
either a logic zero (a nominal 0 volt) or a
logic 1 (a nominal 5 volts) . If the inputs
are not at TTL voltage levels, voltage­
level conversion can be performed with a
variety of devices, including transistors
and off-the-shelf IC's.

Figure 6 shows the general method for
reading eight data-inputs. The gate­
enable signal is derived from the signals
shown in Figs. 4 and 5 and represents the
execution of a microprocessor I/0 or
LOAD instruction. Data on the eight lines
is sampled at some time within the 2 ms or
so of the I/0 instruction. Gating is per­
formed by Tri-state gates whose outputs
are at a high impedance (disconnected)
state when the gate-enable signal is in­
active. Since the data bus is shared by
memory , I/0 devices and other system
logic , Tri-state outputs are a necessity .
Because the input data can be sampled
approximately every 10 ms by software
(allowing for a program overhead of loop
maintenance, comparing data, etc.), the
scheme can be used to sample such dis­
crete inputs as switch closures for key­
boards, burglar alarms and control func­
tions. Switch debouncing can be accom­
plished by continuously sampling the in­
put until a closure is detected, and then
sampling 2 ms later or so by using a
software timing loop to reject any false
input caused by noise.

Data is output to the external world in
similar fashion . Because the output data
is present for only several hundred
nanoseconds, however, it must be latched
into flip-flops . Every time an 1/0 write
instruction (or STORE instruction) is ex­
ecuted, new data is latched into the set of
addressed I/0 latches . Of course, only a
portion of the data may be changed by
retaining the same data in the proper bit

FIG. 6-DISCRETE 1/0 read logic.

FIG. 7.-DISCRETE 1/0 write logic.

positions of the CPU register, and chang­
ing the remainder. Figure 7 shows the
method used for writing up to 8 bits of
data. The clock signal that causes the data
to be recorded in the latches is derived
from the signals of Figs. 4 and 5.

As new data may be written out every
I 0 ms or so when software overhead is
considered. discrete outputs of 0 to I 00
kHz can be implemented . The square­
wave output of the TTL latches can be
used for a variety of audio applications.

<-
)>
z
c
)>
JJ
-<

61

such as electronic music synthesis (by
toggling the flip-flops to produce musical
notes), as a software modulator for Tele­
type FSK applications. or for audio warn­
ing signals.

Level-conversion from TTL outputs to
low-voltage DC outputs can be per­
formed by using peripheral drivers such
as LM75451 devices. Figure 8 shows a
set of eight relay drivers that will handle
24-volt relays. An alternative approach
would be to use 5-VDC reed relays that
could be driven directly from some of the
higher-current TTL devices. Devices that
require AC power can be controlled in
two ways-by using relays or by driving
triacs.

The implementations described above
for controlling external inputs and out­
puts can be expanded to as many lines as
required by multiplexing sets of eight
lines at a time. Each eight-line set has a
unique l/0 address assigned to it. It is
convenient to assign the complete set of
l/0 lines to a block of l/0 addresses.
Suppose. for example. that 32 discrete
input lines must be sampled under
microcomputer control : The complete
block of 32 lines might be given the
binary address IIIII! 10000000XX.
where XX represents binary values from
00 through II . Input data from lines 0
through 7 would be transmitted by ex­
ecuting a LOAD instruction from location
FE00 (base 16) for a memory-mapped
scheme. Lines 8 through 15. lines 16
through 23. and lines~ 24 through 31
would be addressed by LOAD instructions
to hex locations FE0L FE02. and FE03.
respectively. ·

The block address would be decoded
by logic that looks at address lines 15
through 2. When those lines hold a valid
memory address of I I I II I 10000000,.
the block is being addressed . Address
lines I and 0 are us~d as inputs to a 7 415 3
multiplexer that selects one of four inputs
to be transmitted to one bit position in the
CPU register being used for the input.
There are eight multiplexers for the eight
input lines, each having inputs of address
lines I and 0 for set selection. The block
address is used to control gating onto the
data bus as previously discussed .

Peripheral interface devices
Since most users may require several

devices to be connected to their micro­
processors, manufacturers have provided
decoding. gating. latching and multiplex­
ing capabilities on special-purpose !Cs
that are designed to supplement the mi­
croprocessor IC The more sophisticated

~ IC's interface with floppy disks and video
z displays . while two ge neral-purpose
~ types are for serial or parallel data 1/0.
1- The serial devices are called USART's or
1rl UART's (or similar names). and are
u:J general-purpose {Universal Synchronous
o and/or Asvnchronous Receive and Trans­
~ mit) devices that operate with serial data
a: at a variety of transmission rates and in a
62

FIG. 8-RELAY DRIVER example.

Table 1-Programmable peripheral interfaces

Microprocessor Peripheral Interface

8080 (Intel)
8085 (Intel)
Z80 (Zilog)
6800 (Motorola)

8255 Programmable peripheral interface

Z80 parallel 1/0 circuit

6502 (MOS Technology)
6820 peripheral interface adapter
6520 peripheral interface device

variety of communication modes . In this
article we ' ll consider only the type of
device that provides parallel l/0 since it
lends itself more readily to control ap­
plications.

The parallel interface device is called a
PIO or PIA (or a similar name). and Table
I lists several. The PIA provides a set of
discrete lines. ranging from 16 to 24. that
can be programmed as inputs or outputs.
Various other functions. such as simple
hand-shaking and interrupt logic . may

also be provided. The peripheral interface
IC is inexpensive (typically one-half the
cost of the microprocessor) and adapt­
able. and it provides all functions in one
convenient package. Programming
usually consists of resetting the device.
sending out a mode-control command to
prepare the device for the 1/0 com­
munication mode . desired. and then per­
form ing the usual l/0 instructions to
transfer data bet;.veen the external dis­
crete lines and the CPU register. R-E

