Power

LT1110 SUPPLIES 6 VOLTS AT 550mA

FROM 2 AA NiCAD CELLS

by Steve Pietkiewicz

The LT1110 micropower DC-DC converter can provide 5 V at 150 mA when operating from two AA alkaline cells. The internal switch $V_{\text {CE(SAT) }}$ sets this power limit. Even with an external low drop switch, more power is not realistically possible. The internal impedance (typically $200 \mathrm{~m} \Omega$ fresh and $500 \mathrm{~m} \Omega$ at end-of-life) of alkaline AA cells limits peak obtainable battery power. Conversely, nickel-cadmium cells have a constant internal impedance ($35 \mathrm{~m} \Omega-50 \mathrm{~m} \Omega$) for AA size) that increases only when the cell is completely
discharged. This allows power to be drawn from the cell at a far greater rate. The circuit in Figure 8 uses two AA NiCad cells to supply 6 volts at 550 mA . The circuit, developed for pagers with transmit capability, runs at full output current for 15 minutes with two Gates Millennium AA NiCad cells. With a 250 mA load, the circuit runs for 36 minutes (see Figure 9). Less heat is generated with a reduced load, resulting in the watt-hour difference observable above.

Figure 8. Schematic Diagram, 2 AA NiCad to +6 Volt Converter

Figure 9. Operating Time at $\mathrm{I}_{\mathrm{LOAD}}=550 \mathrm{~mA}$ and 250 mA

The circuit uses a micropower LT1110 switchingregulator IC as a controller. The internal switch of the LT1110 furnishes base drive to $Q 1$ through the 220Ω resistors. Q1, in turn, supplies base drive to the power switch Q2. The Zetex ZTX849 NPN device is rated at 5A current and comes in a TO-92 package. For surface-mount fans, the FZT-849, also from Zetex, provides the same performance in an SOT-223 package. The 16Ω resistor provides a turn off path for Q2's stored charge. When Q2 is on, current builds in L1. As Q2 turns off, its collector flies positive until D1 turns on. L1's built-up current discharges through D1 into C 2 and the load. The voltage at $\mathrm{V}_{\text {OUT }}$ is divided by R4 and R3 and fed back into the FB pin of the LT1110, which controls Q2's cycling action. Switch current limit, which is necessary to ensure saturation over supply variations, is implemented by Q3-Q5. Q3, C1, R2, and the auxiliary gain block inside the LT1110, form a 220 mV reference point at the LT1110's SET pin. Transistors Q4 and Q5 form a common-base differential amplifier.

Q5's emitter monitors the voltage across $50 \mathrm{~m} \Omega$ resistor R1. When the voltage across $R 1$ exceeds 220 mV , Q 4 turns on hard, pulling current through R5. When the voltage at the IIIM pin of the LT1110 reaches a diode drop below the $\mathrm{V}_{\text {IN }}$ pin, the internal switch turns off. Thus, maximum switch current is maintained at $220 \mathrm{mV} / 50 \mathrm{~m} \Omega$, or 4.4 A , over input variations and manufacturing spread in the LT1110's on time and frequency.
The circuit's output ripple measures 200 mV p.p. and efficiency is 78% at full load with a 2.4 V input. Output power can be scaled down for less demanding requirements. To reduce peak current, increase the value of R1. A $100 \mathrm{~m} \Omega$ resistor will limit current to 2.2A. L1 should be increased in value linearly as current is reduced. For a current limit of $2.2 \mathrm{~A}, \mathrm{~L} 1$ should be $10 \mu \mathrm{H}$. Base drive for Q 2 can also be reduced by increasing the value of the 10Ω resistor. These lower peak currents are much easier on alkaline cells and will dramatically increase alkaline battery life.

