
22 SERVO 11.2004

If you have been around the hobby robotics world, you
probably noticed that almost every robot that you see uses

hobby servos for just about every sort of movement.
Whether it is to drive a wheel on a mobile robot, change the
angle of something, or position a grabber arm, it will likely
use a hobby servo. Hobby servos are useful devices, but they
are not the only way to get things done in robotics. Along
with hobby servos come a list of drawbacks, such as slow
speed, little variability in speed, and the need to constantly
send pulses to them so that they maintain speed or position.
Last month’s column talked about using Pulse Width
Modulation (PWM) for audio purposes. This month, we’ll go
over how to use PWM to control DC motors.

Before discussing PWM, let’s look at another way to
control the speed of a DC motor. This would be to vary the
current that is passing through the motor. While this is a valid
way of controlling the speed of a motor, it is fairly inefficient
and not very robust. Take a look at Figure 1; the current
going through the motor can be adjusted by varying the
position of the potentiometer. Let’s pretend that the motor is
just a resistor with a value of 30 Ω. In reality, the effective
resistance of a motor will be lowest when the motor is stalled
and highest when it is running at its top speed with no load
placed on it. If you are dealing with a low enough voltage,
then you can get away with this strategy.

For example, if you are running your motor at

5 volts and you have the potentiometer adjusted to 20 Ω, you
will be dissipating 0.2 watts through the potentiometer. As
the voltage goes up, the wattage through the potentiometer
goes up with the square of voltage increase. This means that,
if you increase the voltage to 10 volts, the wattage dissipated
through the potentiometer jumps to 0.8 watts. If you happen
to be using an inexpensive potentiometer from RadioShack,
then you are just 0.2 watts shy of its rated limit. The poten-
tiometer that you are using will start to become warm with
this much wattage. Limiting the current through a motor is a
quick and dirty method to vary the speed of a motor. It will
work for small motors at low voltages.

In a similar vein, you can vary the speed of a motor by
varying the voltage that you drive it with. One way to do this
would be to use a variable voltage regulator. This method
also suffers from overheating issues if your current draw is
sufficiently high. This can be a slightly better method of
varying the motor’s speed because — to some extent — the
overheating issue can be dealt with by using heatsinks on the
voltage regulators.

While both of the previously mentioned methods of
varying a motor’s speed work, they have big problems with
overheating and, because of that, they are also inefficient.
This is where PWM comes in. With PWM, you are rapidly giving
the motor power and then shutting off the power over and

Figure 1. Controlling a
motor’s speed by using

a potentiometer.

Figure 2. Controlling
a motor’s speed

using PWM.

Figure 3. Reversible speed controller using a relay.

by Jack Buffingtonby Jack Buffington

Getting Up to Speed
With PWM

Rubberbands.qxd 10/1/2004 1:03 PM Page 22

over again. The
amount of time that
you have the motor
on verses off deter-
mines the average
speed of the motor.

Figure 2 shows a
simple circuit that
you can use to vary
the speed of a motor
using a transistor to
switch the motor on
and off. Notice that
the transistor has a
diode across its
emitter and collector. When you are running a motor, you are
giving power to its coils in sequence. As you give power to a
coil, a magnetic field appears around that coil. When you
remove power from the coil, the magnetic field collapses and
this sends a pulse of power in the opposite direction that it
originally came into the coil. The diode is there to route that
pulse of power back to the battery, where it won’t damage
anything. The relay also has a diode for the same reason.

One thing to pay attention to here is that you need a
“fast” diode. The pulses of power coming out of the relay or
motor are incredibly short in duration, but can be pretty
destructive. Schottky diodes are usually the type used to
prevent these pulses from damaging the transistor or FET in
speed control circuits.

Varying the speed of a motor in one direction is useful
for some applications, such as driving a fan or a water pump.
For most robotic applications, you will want to be able to
reverse the direction of the motor, as well as vary the speed.
One way to accomplish that is to use a transistor and relay,
as shown in Figure 3. In this circuit, the relay switches the
motor’s direction.

Switching direction with a relay is a fairly robust method
of controlling a motor’s speed and direction. It is easy to
build and is inexpensive. The down side of using this method
is that it is not solid-state, so the relay will have to be replaced
from time to time if it switches often enough. Relays do not
switch instantaneously. They can take anywhere from 0.5 to
30 ms to switch. If you need your motor to be able to switch
direction rapidly, you will have to choose a relay that can
switch quickly.

One further drawback to using relays is that they have
different specifications for how much current they can carry
as opposed to how much current they can switch. Often, you
will find that a relay can only switch 10% of the current that
it can handle continuously. This is due to arcing between
the contacts, which can slowly erode them or destroy them
in one big flash if you try to switch them while they are
carrying a decent amount of current!

A solid-state circuit able to switch a motor on and off —
as well as reverse its speed — is what is known as an
H-bridge. An H-bridge is four transistors or FETs arranged as

shown in Figure 4. By switching on the transistors or FETs in
opposite corners of the H-bridge, you can cause the motor to
run. If you turn off those transistors or FETs and turn on the
other two, the motor will start running in the opposite
direction.

One additional thing that you can do is turn on the two
top or two bottom transistors or FETs at the same time. This
causes the motor’s leads to be shorted together and will
cause the motor to resist movement without your circuit
having to provide any power to the motor. You can really see
this with a geared motor. Try turning the output shaft with
your fingers and then shorting the two motor leads together
and turning it again. You should see a noticeable difference.

H-bridges are great little circuits, but they are not
something that is easily designed. While this column treats
them as digital circuits, they are definitely NOT digital and sit
squarely in the realm of analog electronics. It can be a very
frustrating experience to try to design your own H-bridge
unless you have a solid foundation in analog electronics.
Luckily for the robotics hobbyist and professional engineers
alike, there are pre-made H-bridges on single chips or on
circuit boards that you can buy. Some examples are the L293,

SERVO 11.2004 23

Figure 6. Connecting an L293D to a PIC16F873 microcontroller.

Figure 5. Pinout for the L293D.Figure 4. An H-bridge.

Rubberbands and Bailing Wire

Rubberbands.qxd 10/1/2004 1:04 PM Page 23

L293D, L298, and LMD18200. This column will discuss the
L293D. It is the least expensive of the three chips and can
carry the least amount of current (600 mA). It is sufficient
though for small gear motors.

The L293D is a dual H-bridge that has built-in diodes
to catch the reverse voltage spikes that were mentioned

previously. Figure 5 shows the pinout for the L293D.
The L293D has three input lines for each H-bridge. There

are two inputs that directly correspond to the two outputs. If
one of these pins is set high, the corresponding pin will be
set to your motor drive voltage. If you input a low signal,
then the output pin will be set to ground. The third input line
is the enable line. If this line is high, then the outputs will be
as described above. If the enable pin is driven low, then the
output pins will go high. In Figure 6, the L293D’s enable lines
are connected to the PIC16F873’s PWM output lines. By
using these peripherals, you will be able to control the speed
of motors connected to the L293D chip.

Figure 7 shows a simple program
that can control two motors for a
robot that drives using tank-style
steering. The program will cause the
robot to slowly speed up until it reaches
top speed, then slow back down to a
stop, turn at full speed, and then go
full speed backward before stopping.
This program is made to compile in the
CCS C compiler for a PIC16F873 with a
20 MHz crystal.

The way that the microprocessor is
connected to the L293D in Figure 6
allows the motor to go in either direction
or coast. This type of PWM is called
“sign magnitude.” This is not the only
way to do PWM, though. There are
two other types. One type is called
“locked antiphase.” This type of PWM
keeps the enable line high and rapidly
switches the direction that the circuit is
trying to drive the motor. If you do this
fast enough, the amount of time that
you are driving it clockwise versus
counter clockwise determines both the
speed and direction of the motor.

There is one more way to control a
motor through PWM. This method
alternates between driving the motor
and shorting the leads of the motor
together to act as a brake.

Figures 8 and 9 show how the
L293D could be set up to use these
other two types of PWM. To drive the
circuit in Figure 8, just send a PWM
signal out to the H-bridge on the line
corresponding to the motor that you
want to control. To drive the circuit in
Figure 9, you would have to do your
PWM in software, since you would
need to be able to hold one input for
the H-bridge low and send a PWM signal
to the other input. This would drive the
motor in one direction. If you wanted

Rubberbands and Bailing Wire

24 SERVO 11.2004

The term Hi-Z is just a fancy way of saying that an I/O pin
is for all practical purposes connected to neither the positive
voltage nor ground. It is as if there is no connection at all.

TECH TIDBIT

// PWM01.c
// This program is a demonstration program for a two-wheeled robot. It slowly
// accelerates the robot forward and then slows back down to a stop. It then
// turns and backs up.
// This program compiles with the CCS C compiler and is meant to be run on a
// PIC16F873 with a 20 Mhz oscillator.

#include <16F873.h>
#device adc=8
#use delay(clock=20000000)
#fuses NOWDT,HS, PUT, NOPROTECT, BROWNOUT, LVP, NOCPD, NOWRT, NODEBUG
const int8 forward = 0b00100100;
const int8 backward = 0b00011000;
const int8 right = 0b00101000;
const int8 left = 0b00010100;
#byte portA = 5

void main()
{
int i, PWMvalue;

setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_spi(FALSE);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DIV_BY_16,63,1);
setup_ccp1(CCP_PWM);
setup_ccp2(CCP_PWM);

portA = forward;
// slowly ramp up over five seconds
for(i = 0; i < 255; i++)

{
set_pwm1_duty(i);
set_pwm2_duty(i);
delay_ms(20);
}

// slow back down over five seconds
for(i = 255; i > 0; i—)

{
set_pwm1_duty(i);
set_pwm2_duty(i);
delay_ms(20);
}

// turn
portA = right;
set_pwm1_duty(255);
set_pwm2_duty(255);
delay_ms(700);
// go backwards
portA = backward;
delay_ms(2000);
// stop
set_pwm1_duty(0);
set_pwm2_duty(0);

}

Figure 7. Code to drive a two-wheeled robot using the L293 and a PIC.

Rubberbands.qxd 10/1/2004 1:05 PM Page 24

the motor to go the other direction, then you would want
to hold the second pin low and send a PWM signal to the
first pin.

You may be asking yourself right now why you would
want to use one type of driving an H-bridge over another.
The first method — where the motor is either driven or is
coasting — is easy to set up a circuit for if you are driving a
motor in only one direction. It also requires no extra circuitry
when connecting to an H-bridge that has an enable line. The
down side of driving a motor this way is that it is not that
good at controlling the actual speed of
a motor. This method primarily controls
the amount of torque that the motor
puts out. If there is no load on the
motor, then it will achieve top speed
with a fairly low PWM value.

The second method where the
motor is rapidly driven in opposite
directions turns out to be a pretty good
way of controlling a motor’s speed.
The speed versus PWM value ends up
being pretty linear. There are certain
situations where this method of driving
an H-bridge fits in nicely with the type
of math that you are using on your
microcontroller.

The third method also produces a
fairly linear speed versus PWM, but
requires that you manually change the
direction of the motor. This method
gives you double the number of
distinct speeds that you can command
your motor to go, but — in reality —
you are unlikely to notice much of a
difference.

One question that arises when
working with PWM is how fast should
you do your PWM. The simple answer
is that it depends on your application.
You can successfully do PWM at rates
of 1,000 Hz or lower, but you may find
that the constant whine caused by the
PWM quickly becomes annoying. On
the other hand, you don’t want to
do your PWM too fast because the
transistors or FETs used in H-bridges
are not digital devices. They do not
transition from fully off to fully on
instantly. There is some amount of
time during switching where they are
not quite off and not quite on. During
this time, a larger than normal amount
of voltage will be dropped through
these devices, causing them to
dissipate more wattage as heat.

For the L293D H-bridge, it takes an

average of 600 nanoseconds to transition from fully on to
fully off and then fully on again. If you did your PWM at a
rate of 1,666,666 Hz, you would be forcing the H-bridge to
be in transition 100% of the time and would cause it to burn
up almost immediately even with a small load attached to it.
Even at much lower rates, the transition times can still cause
the part to heat up significantly.

A general rule of thumb for setting the PWM rate for a
motor is to put the frequency just high enough that the
sound coming out of the motor is not loud enough to be

Rubberbands and Bailing Wire

Science and Engineering
Tools for Schools - GEARS-IDS™

DESIGN, BUILD, TEST & LEARN with GEARS-IDS™ Invention & Design System

Invest in the best
trainer for your
Robotics
program!

Gears Educational Systems, LLC
105 Webster Street, Hanover, MA 02339
781.878.1512 • www.gearseds.com

Using GEARS-IDS™ every school can
participate in engineering design
competitions similar to those played at
universities and national robotics events!

GEARS-IDS™ is more than robotics. Use
it to illustrate physical science principles,
pre-engineering
or as the basis
for a year-round
t e c h n o l o g y
education.

GEARS-IDS™ is
rugged enough
to customize your designs with additional
manipulator, actuators or cameras.

Find out how your school can get the
GEARS-IDS™ advantage. Contact Mark
Newby at mnewby@gearseds.com.

Note: Licensed SolidWorks users are eli-
gible to receive a free copy of Prof. Marie
Planchard’s SolidWorks 2004 Tutorial with
their first Gears Kit.

THE GEARS-IDS™ ADVANTAGE
✸ Hands-on projects with curriculum

resources help students learn math,
science and engineering principles.

✸ High-torque all metal gear head
motors.

✸ World-class pneumatics.
✸ Electronics include speed control-

lers, switches, wire, and connectors.
✸ Interfaces with Radio Controllers

or Parallax BASIC® Stamp program-
mable micro-controller.

✸ Gears 3D solid models.
✸ Precision-machined Steel and

Aluminum drive components.
✸ All components organized in a

storage container for classroom
management.

✸ Used in high schools and colleges
across the country.

SERVO 11.2004 25Circle #25 on the Reader Service Card.

Rubberbands.qxd 10/1/2004 3:32 PM Page 25

mailto:mnewby@gearseds.com
http://www.gearseds.com

annoying. The volume of the sound will decrease as you raise
the PWM frequency. There are other things to consider, but
— for most hobby applications — this is enough.

This is not quite good enough for the locked anti-phase
strategy, though. Since this strategy is constantly sending
power through the motor, it is always consuming power.
Motors are essentially coils. When you power a coil, it takes
a certain amount of time for the magnetic field to build up
and then collapse. If you set your PWM rate too low, then the
field will have enough time to fully collapse as you change
directions. This will cause your power consumption to
skyrocket. By setting your PWM rate higher, you will see a
drop in the amount of power consumed by the motor when
it is being driven with a 50% duty cycle PWM wave. The ideal
frequency where the least amount of current is drawn may
be well above the range of frequencies that a person can
hear if your motor has low inductance.

This article has talked a lot about how to drive motors,
but maybe some time should be spent on where you can get
your hands on motors to drive in the first place. Certainly, the
easiest way to find motors to get started with is from a toy.

Remote controlled toys tend to make good robot
bases, since they already have space to put batteries and
have a complete drivetrain ready to use.

If you are the more adventurous sort (good for you!),
then you might prefer to buy your own motors and gearboxes
so that you build your own robot parts the way you want
them to be. Solarbotics.com sells some really nice
motor/gearbox combinations for prices that are well within a
hobbyist’s budget.

If you really want to fully engineer things and get your
robots to peak performance, take a look at maxon
motorusa.com where you can buy pretty much any size DC
motor that runs at whatever voltage you want and can be
connected to many different gearboxes with other things
such as rotary encoders or tachometers. Be prepared for
sticker shock when you ask for prices, though. A motor/
gearbox combination from Maxon will set you back
anywhere from $80.00 to $200.00 and there is a $250.00
minimum for orders. Even still, Maxon makes some really
excellent motors and is definitely worth a look if you want to
take your robot to the next level.

Hopefully, this month’s column has opened your eyes to
how you can get started using DC motors in your robots.
Controlling DC motors using PWM is an easy thing to do with
most microcontrollers and can open the doors to creating
more exciting robots. SV

Rubberbands and Bailing Wire

26 SERVO 11.2004

Would you like to be able to communicate with your PIC
using your computer’s serial port? Here is a handy little circuit
that will take a RS232 signal and invert it while converting it to
a 0-5 volt signal. If
the microcontroller
that you use
doesn’t need the
inversion, switch
the position of the
transistor and 2.2K
resistor.

TECH TIDBIT

www.ccsinfo.com
Sells the C compiler for PIC processors used

in this column

www.microchip.com
Manufacturer of the PIC microcontroller

www.mouser.com
Source for electronic parts

www.solarbotics.com
Sells motors/gearbox combinations and other

useful robot parts.

TECH TIDBIT

Figure 8. Controlling a motor using Locked Anti-Phase PWM.

Figure 9. Controlling a motor so that it is either
driven or is braking.

Rubberbands.qxd 10/1/2004 1:07 PM Page 26

http://www.ccsinfo.com
http://www.microchip.com
http://www.mouser.com
http://www.solarbotics.com
http://Solarbotics.com
http://maxonmotorusa.com
http://maxonmotorusa.com

