Reducing the dropout voltage of programmable regulators

by Carlo Venditti
The Charles Stark Draper Laboratory Inc., Cambridge, Mass.

A programmable regulator's dropout voltage—the minimum allowable potential between its input (V_{in}) and output (V_{out}) —can be improved by adding an external output stage and negative feedback. The resulting regulated output voltage (E_{out}) not only approaches V_{in} more closely, but the the current-drive capability is also better, thanks to the outboard power-transistor stage.

The design technique used to achieve this improved performance is described here for Fairchild's popular $\mu A78MG$ regulator, which has a nominal dropout voltage of 3.0 volts. As shown in the figure, a change in V_{in} causes V_{out} to increase temporarily. The corresponding increase at E_{out} that is applied to the control input of the $\mu A78$ forces V_{out} lower, toward the value it had initially. If the resistor network R_1 to R_3 is optimized, E_{out} can be brought to within 1.5 V of V_{in} .

Consider the case where the output voltage E_{out} is to be kept at 12.5 v \pm 50 mV for a V_{in} ranging from 14 to 15.5 v. When V_{in} is at 14, V_{out} cannot be above 11, owing to the dropout voltage of the regulator. Thus with an output voltage of 12.5, the voltage at the base of Q_1 is 13.1 (0.6 v higher).

Now R₁ can be selected to pass a given value of

transistor base current, I_b , of say, 1.2 milliamperes, and a current through R_2 of perhaps twice this value (2.4 mA), plus a small amount to account for variations in I_b . Thus $R_1 = (14-13.1)v/3.75$ mA = 240 Ω , and $R_2 = (13.1-11)v/2.4$ mA = 910 Ω .

The next condition to be addressed is the case where V_{in} assumes a value of 15.5 V, so that R_3 may be determined. Because V_{out} ultimately decreases with an increase in V_{in} , V_{out} should be made to move to its minimum value so that the maximum dynamic range of the circuit is realized. From the data sheet of the μ A78, $V_{out(min)} = 5.0$ V. Note that changes in V_{out} are scaled by the R_2/R_1 ratio, and these resistors ensure that a change of 910/240 = 3.8 V occurs for every 1-V increase in V_{in} .

Thus the current through R_2 at this time will be (13.1-5.0)/910=8.8 mA, and assuming the minimum (quiescent) current of the regulator is 2 mA, the current through R_3 is (8.8+2.0)=10.8 mA. Therefore $R_3=5/10.8=470~\Omega$. The table summarizes the actual dynamic performance of the regulator. Note the apparent dropout voltage of the regulator has been reduced to $14.0-12.482\approx1.5$ v when V_{in} is at its minimum.

The junction temperature of the on-chip power transistor is $T_j = \theta_{JA} P_T + T_A$, where θ_{JA} is the junction to ambient thermal resistance (80 Ω , see data sheets) and T_A is the ambient temperature. Thus, assuming $T_A = 25^{\circ}\text{C}$, $T_j = 35^{\circ}\text{C}$, well below the 125°C thermal shutdown temperature of the $\mu A78$.

A check on the chip's temperature will confirm that the regulator's thermal shutdown point has not been reached. The temperature reaches a maximum when $V_{in} = 14.0$. At this voltage, the regulator's output current is

Closer. Outboard power transistor stage, and resistor pad R_1-R_3 set E_{out} to within a few volts of V_{in} , so that $(E_{out}-V_{in})$ is below μ A78's dropout value. Q_1 also provides increased current capacity. Table summarizes dynamic range attained for example using technique discussed in text.

20.8 mA, and the output power is 20.8 (14-11) = 62.5 becomes $P_T = 118$ mW. mw. The quiescent current is 4 mA (see data sheets), and the quiescent power drain becomes 4(14 V) = 56mw. As a consequence of these figures, the total output