LT1074/LT1076 Design Manual

Carl Nelson

INTRODUCTION

The use of switching regulators increased dramatically in the 1980's and this trend remains strong going into the 90 s. The reasons for this are simple; heat and efficiency. Today's systems are shrinking continuously, while simultaneously offering greater electronic "horsepower." This combination would result in unacceptably high internal temperatures if low efficiency linear supplies were used. Heat sinks do not solve the problem in general because most systems are closed, with low thermal transfer from "inside" to "outside."

Battery powered systems need high efficiency supplies for long battery life. Topological considerations also require switching technology. For instance, a battery cannot generate an output higher than itself with linear supplies. The availability of low cost rechargeable batteries has created a spectacular rise in the number of battery powered systems, and consequently a matching rise in the use of switching regulators.

The LT1074 and LT1076 switching regulators are designed specifically for ease of use. They are close to the ultimate "three terminal box" concept which simply requires an input, output and ground connection to deliver power to the load. Unfortunately, switching regulators are not horseshoes, and "close" still leaves room for egregious errors in the final execution. This Application Note is intended to eliminate the most common errors that customers make with switching regulators as well as offering some insight into the inner workings of switching designs. There is also an entirely new treatment of inductor design based on the mathematical models of core loss and peak current. This allows the customer to quickly see the allowable limits for inductor value and make an intelligent decision based on the need for cost, size, etc. The procedure differs greatly from previous design techniques and
many experienced designers at first think it can't work. They quickly become silent after standard laborious trial-and-error techniques yield identical results.
There is an old adage in woodworking - "Measure twice, cut once." This advice holds for switching regulators, also. Read AN44 through quickly to familiarize yourself with the contents. Then reread the pertinent sections carefully to avoid "cutting" the design two, three, or four times. Some switching regulator errors, such as excessive ripple current in capacitors, are time bombs best fixed before they are expensive field failures.

Since this paper was originally written, Linear Technology has produced a CAD program for switching regulators called SwitcherCAD. This program uses the ideas presented in this application note, but adds an extra level of accuracy by factoring in more second order effects. It also takes the drudgery out of the iterative design procedure, allowing rapid "what if" exploration. I highly recommend using SwitcherCAD after absorbing the basic concepts presented here. It cuts design time considerably, presents detailed information on operating conditions, and has many safeguards to prevent unreliable designs. One caution, however; SwitcherCAD has an initial run sequence, called Novice Mode, which generates a very conservative design from database components. The results of this initial design may not correlate with AN44 procedures because of assumptions used in SwitcherCAD and because of the limited number of components in the database. Changing to Expert Mode allows all components to be changed at will.

SwitcherCAD does not calculate components for loop stability. Linear Technology will be creating several separate programs for this purpose during 1993. Contact our Application department for details.

Application Note 44

TABLE OF CONTENTS

INTRODUCTION AN44-1
ABSOLUTE MAXIMUM RATINGS AN44-3
PACKAGE/ORDER INFORMATION AN44-3
ELECTRICAL CHARACTERISTICS AN44-3
BLOCK DIAGRAM AN44-5
BLOCK DIAGRAM DESCRIPTION AN44-6
TYPICAL PERFORMANCE CHARACTERISTICS AN44-7
PIN DESCRIPTIONS AN44-10
$V_{\text {IN }}$ Pin AN44-10
Ground Pin AN44-10
Feedback Pin AN44-10
Shutdown Pin AN44-11
Status Pin AN44-13
Lim Pin AN44-14
Error Amplifier AN44-15
DEFINITION OF TERMS AN44-16
POSITIVE STEP-DOWN (BUCK) CONVERTER AN44-17
Inductor AN44-19
Output Catch Diode AN44-19
LT1074 Power Dissipation AN44-20
Input Capacitor (Buck Converter) AN44-20
Output Capacitor AN44-21
Efficiency AN44-22
Output Divider AN44-22
Output Overshoot AN44-22
Overshoot Fixes that Don't Work AN44-23
TAPPED-INDUCTOR BUCK CONVERTER AN44-23
Snubber AN44-25
Output Ripple Voltage AN44-26
Input Capacitor AN44-26
POSITIVE TO NEGATIVE CONVERTER AN44-26
Input Capacitor AN44-28
Output Capacitor AN44-29
Efficiency AN44-30
NEGATIVE BOOST CONVERTER AN44-31
Output Diode AN44-32
Output Capacitor AN44-32
Output Ripple AN44-33
Input Capacitor AN44-33
INDUCTOR SELECTION AN44-33
Minimum Inductance to Achieve a Required
Output Power AN44-34
Minimum Inductance Required to Achieve a Desired Core Loss AN44-35
MICROPOWER SHUTDOWN AN44-38
Start-Up Time Delay AN44-38
5-PIN CURRENT LIMIT AN44-39
SOFT START AN44-39
OUTPUT FILTERS AN44-40
INPUT FILTERS AN44-42
OSCILLOSCOPE TECHNIQUES AN44-43
Ground Loops AN44-43
Miscompensated Scope Probe AN44-44
Ground "Clip" Pickup AN44-44
Wires Are Not Shorts AN44-44
EMI SUPPRESSION AN44-45
TROUBLESHOOTING HINTS AN44-46
Low Efficiency AN44-46
Alternating Switch Timing AN44-46
Input Supply Won't Come Up AN44-46
Switching Frequency Is Low In Current Limit AN44-46
IC Blows Up! AN44-46
IC Runs Hot AN44-47
High Output Ripple or Noise Spikes AN44-47
Poor Load or Line Regulation AN44-47
$500 \mathrm{kHz}-5 \mathrm{MHz}$ Oscillations, Especially atLight LoadAN44-47

ABSOLUTE MAXImUM RATINGS

Input Voltage
LT1074/ LT1076 45 V
LT1074HV/76HV 64 V
Switch Voltage with Respect to Input Voltage LT1074/ 76 64 V
LT1074HV/76HV 75 V
Switch Voltage with Respect to Ground Pin (Vsw Negative)LT1074/76 (Note 6)35 V
LT1074HV/76HV (Note 6) 45 V
Feedback Pin Voltage 10 V
Shutdown Pin Voltage (Not to Exceed ViN) 40 V
Status Pin Voltage 30 V
(Current Must B
Switches "On")
LLim Pin Voltage (Forced) 5.5V
Maximum Operating Ambient Temperature Range
LT1074C/76C, LT1074HVC/76HVC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$LT1074M/76M, LT1074HVM/76HVM .. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature RangeLT1074C/76C, LT1074HVC/76HVC $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$LT1074M/76M, LT1074HVM/76HVM ... $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Storage Temperature $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

	ORDER PART NUMBER
$\mathrm{O}_{2}{ }^{\text {¢ }}$	LT1074CT
TPACKAGE 5-LEAD $10-220$	LT1074HVCT
LEADS ARE FORMED STANDARD	LT1076HVCT
FOR STRAIGHT LEADS, ORDER FLOW 06	
оттом vew	LT1074MK
	LT1074HVMK
O^{2}	LT1074CK
$\bigcirc{ }^{33}$ Caseisgno	LT1074HVCK
v_{sw}	LT1076HVMK
K PACKAGE	LT1076CK
4-LEAO TO-3METAL CAN	LT1076HVCK
front vew	LT1074CY
$\mathrm{F}^{\text {Shutrown }}$	
(- ${ }_{4}^{5}{ }_{4}^{5}$	
$0{ }_{3}^{3}$	
CKKGE	
7-LEAD T0-220	

ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{N}}=25 \mathrm{~V}$, unless otherwise noted.

ELECTRICAL CHRRACTERISTICS $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{v}_{1 \mathbb{}}=25 \mathrm{~V}$, unless otherwise noted.

The denotes the specifications which apply over the full operating temperature range.
Note 1: To calculate maximum switch "on" voltage at currents between low and high conditions, a linear interpolation may be used.
Note 2: A feedback pin voltage $\left(V_{F B}\right)$ of 2.5 V forces the V_{C} pin to its low clamp level and the switch duty cycle to zero. This approximates the zero load condition where duty cycle approaches zero.
Note 3: Total voltage from $\mathrm{V}_{\mathbb{I}}$ pin to ground pin must be $\geq 8 \mathrm{~V}$ after startup for proper regulation.

Note 4: Switch frequency is internally scaled down when the feedback pin voltage is less than 1.3 V to avoid extremely short switch on times. During testing, V_{FB} is adjusted to give a minimum switch on time of $1 \mu \mathrm{~S}$.
Note 5: $\mathrm{I}_{\text {LIM }}=\frac{R_{\text {LIM }}-1 \mathrm{k}}{2 \mathrm{k}}($ LT1074 $), \mathrm{I}_{\text {LIM }}=\frac{R_{\text {LIM }}-1 \mathrm{k}}{5.5 \mathrm{k}}($ LT1076 $)$.
Note 6: Switch to input voltage limitation must also be observed.
Note 7: $\mathrm{V}_{\text {MAX }}=40 \mathrm{~V}$ for the LT1074/76 and 60V for the LT1074HV/76HV.
Note 8: Does not include switch leakage.

BLOCK DIAGRAM

Application Note 44

BLOCK DIAGRAM DESCRIPTION

A switch cycle in the LT1074 is initiated by the oscillator setting the R/S latch. The pulse that sets the latch also locks out the switch via gate G 1 . The effective width of this pulse is approximately 700 ns , which sets the maximum switch duty cycle to approximately 93% at 100 kHz switching frequency. The switch is turned off by comparator C1, which resets the latch. C1 has a sawtooth waveform as one input and the output of an analog multiplier as the other input. The multiplier output is the product of an internal reference voltage, and the output of the error amplifier, A 1 , divided by the regulator input voltage. In standard buck regulators, this means that the output voltage of A1 required to keep a constant regulated output is independent of regulator input voltage. This greatly improves line transient response, and makes loop gain independent of input voltage. The error amplifier is a transconductance type with a G_{M} at null of approximately $5000 \mu \mathrm{mho}$. Slew current going positive is $140 \mu \mathrm{~A}$, while negative slew current is about 1.1 mA . This asymmetry helps prevent overshoot on startup. Overall loop frequency compensation is accomplished with a series RC network from V_{C} to ground.
Switch current is continuously monitored by C 2 , which resets the R / S latch to turn the switch off if an overcurrent condition occurs. The time required for detection and switch turn-off is approximately 600 ns . So minimum switch "on" time in current limit is 600 ns . Under dead shorted output conditions, switch duty cycle may have to be as low as 2% to maintain control of output current. This would require switch on time of 200 ns at 100 kHz switching frequency, so frequency is reduced at very low output
voltages by feeding the FB signal into the oscillator and creating a linear frequency downshift when the FB signal drops below 1.3V. Current trip level is set by the voltage on the lum pin which is driven by an internal $320 \mu \mathrm{~A}$ current source. When this pin is left open, it self-clamps at about 4.5V and sets current limit at 6.5A for the LT1074 and 2.6A for the LT1076. In the 7-pin package an external resistor can be connected from the lııM pin to ground to set a lower current limit. A capacitor in parallel with this resistor will soft start the current limit. A slight offset in C2 guarantees that when the $\mathrm{l}_{\text {IIM }}$ pin is pulled to within 200 mV of ground, C2 output will stay high and force switch duty cycle to zero.
The "Shutdown" pin is used to force switch duty cycle to zero by pulling the l lim pin low, or to completely shut down the regulator. Threshold for the former is approximately 2.35 V , and for complete shutdown, approximately 0.3 V . Total supply current in shutdown is about $150 \mu \mathrm{~A}$. A $10 \mu \mathrm{~A}$ pull-up current forces the shutdown pin high when left open. A capacitor can be used to generate delayed startup. A resistor divider will program "undervoltage lockout" if the divider voltage is set at 2.35 V when the input is at the desired trip point.

The switch used in the LT1074 is a Darlington NPN (single NPN for LT1076) driven by a saturated PNP. Special patented circuitry is used to drive the PNP on and off very quickly even from the saturation state. This particular switch arrangement has no "isolation tubs" connected to the switch output, which can therefore swing to 40 V below ground.

TYPICAL PERFORMARCE CHARACTERISTICS

Feedback Pin Characteristics

LTIOR - TPCOM

Status Pin Characteristics

AN44-7

ITIFIG1L IFEnrVinilimice Gחimntienisils

Reference Shift with Ripple

Reference Voltage vs

Switching Frequency vs

TYPICAL PERFORMANCE CHARACTERISTICS

Application Note 44

PIn DESCRIPTIONS

$V_{I N}$ PIN

The $\mathrm{V}_{\mathbb{I N}}$ pin is both the supply voltage for internal control circuitry and one end of the high current switch. It is important, especially at low input voltages, that this pin be bypassed with a low ESR, and low inductance capacitor to prevent transient steps or spikes from causing erratic operation. At full switch current of 5 A , the switching transients at the regulator input can get very large as shown in Figure 1. Place the input capacitor very close to the regulator and connect it with wide traces to avoid extra inductance. Use radial lead capacitors.

Figure 1. Input Capacitor Ripple
$L_{p}=$ Total inductance in input bypass connections and capacitor.
"Spike" height $\left(\frac{d \mathrm{l}}{\mathrm{dt}} \cdot L_{p}\right)$ is approximately 2 V per inch of lead length.
Step $=0.25 \mathrm{~V}$ for $\mathrm{ESR}=0.05 \Omega$ and $\mathrm{I}_{\mathrm{SW}}=5 \mathrm{~A}$ is 0.25 V .
Ramp $=125 \mathrm{mV}$ for $\mathrm{C}=200 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{ON}}=5 \mu \mathrm{~S}$,
and $I_{S W}=5 A$ is 125 mV .
Input current on the $\mathrm{V}_{\text {IN }}$ Pin in shutdown mode is the sum of actual supply current $(\approx 140 \mu \mathrm{~A}$, with a maximum of $300 \mu \mathrm{~A}$) and switch leakage current. Consult factory for special testing if shutdown mode input current is critical.

GROUND PIN

It might seem unusual to describe a ground pin, but in the case of regulators, the ground pin must be connected properly to ensure good load regulation. The internal reference voltage is referenced to the ground pin; so any error in ground pin voltage will be multiplied at the output;

$$
\Delta \mathrm{V}_{\text {OUT }}=\frac{\left(\Delta \mathrm{V}_{\mathrm{GND}}\right)\left(\mathrm{V}_{\text {OUT }}\right)}{2.21}
$$

To ensure good load regulation, the ground pin must be connected directly to the proper output node, so that no high currents flow in this path. The output divider resistor should also be connected to this low current connection line as shown in Figure 2.

Figure 2. Proper Ground Pin Connection

FEEDBACK PIN

The feedback pin is the inverting input of an error amplifier which controls the regulator output by adjusting duty cycle. The non-inverting input is internally connected to a trimmed 2.21 V reference. Input bias current is typically $0.5 \mu \mathrm{~A}$ when the error amplifier is balanced ($\mathrm{I}_{\text {Out }}=0$). The error amplifier has asymmetrical G_{M} for large input signals to reduce startup overshoot. This makes the amplifier more sensitive to large ripple voltages at the feedback pin. $100 \mathrm{mVp}-\mathrm{p}$ ripple at the feedback pin will create a 14 mV offset in the amplifier, equivalent to a 0.7% output voltage shift. To avoid output errors, output ripple ($p-p$) should be less than 4% of DC output voltage at the point where the output divider is connected.

See the "Error Amplifier" section for more details.

Frequency Shifting at the Feedback Pin

The error amplifier feedback pin (FB) is used to downshift the oscillator frequency when the regulator output voltage is low. This is done to guarantee that output short circuit

PIn DESCRIPTIONS

current is well controlled even when switch duty cycle must be extremely low. Theoretical switch "on" time for a buck converter in continuous mode is;

$$
\begin{aligned}
\mathrm{t}_{O N} & =\frac{V_{O U T}+V_{D}}{V_{I N} \bullet f} \\
V_{D} & =\text { Catch diode forward voltage }(\approx 0.5 \mathrm{~V}) \\
f & =\text { Switching frequency }
\end{aligned}
$$

At $f=100 \mathrm{kHz}, \mathrm{t}_{0 \mathrm{~N}}$ must drop to $0.2 \mu \mathrm{~s}$ when $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ and the output is shorted ($\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$). In current limit, the LT1074 can reduce t_{ON} to a minimum value of $\approx 0.6 \mu \mathrm{~s}$, much too long to control current correctly for $\mathrm{V}_{\text {OUT }}=0$. To correct this problem, switching frequency is lowered from 100 kHz to 20 kHz as the FB pin drops from 1.3 V to 0.5 V . This is accomplished by the circuitry shown in Figure 3.
Q1 is off when the output is regulating ($\mathrm{V}_{\mathrm{FB}}=2.21 \mathrm{~V}$). As the output is pulled down by an overload, $V_{F B}$ will eventually reach 1.3 V , turning on Q1. As the output continues to drop, Q1 current increases proportionately and lowers the frequency of the oscillator. Frequency shifting starts when the output is $\approx 60 \%$ of normal value, and is down to its minimum value of $\cong 20 \mathrm{kHz}$ when the output is $\cong 20 \%$ of normal value. The rate at which frequency is shifted is determined by both the internal 3 k resistor R3 and the external divider resistors. For this reason, R2 should not be increased to more than $4 \mathrm{k} \Omega$, if
the LT1074 will be subjected to the simultaneous conditions of high input voltage and output short circuit.

SHUTDOWN PIN

The shutdown pin is used for undervoltage lockout, micropower shutdown, soft start, delayed start, or as a general purpose on/off control of the regulator output. It controls switching action by pulling the LIIM pin $^{\text {low, which }}$ forces the switch to a continuous "off" state. Full micropower shutdown is initiated when the shutdown pin drops below 0.3 V .
The V/I characteristics of the shutdown pin are shown in Figure 4. For voltages between 2.5 V and $\approx \mathrm{V}_{\text {IN }}$, a current of $10 \mu \mathrm{~A}$ flows out of the shutdown pin. This current increases to $\approx 25 \mu \mathrm{~A}$ as the shutdown pin moves through the 2.35 V threshold. The current increases further to \approx $30 \mu \mathrm{~A}$ at the 0.3 V threshold, then drops to $\approx 15 \mu \mathrm{~A}$ as the shutdown voltage falls below 0.3 V . The $10 \mu \mathrm{~A}$ current source is included to pull the shutdown pin to its high or default state when left open. It also provides a convenient pullup for delayed start applications with a capacitor on the shutdown pin.

When activated, the typical collector current of Q1 in Figure 5, is $\approx 2 \mathrm{~mA}$. A soft start capacitor on the $\mathrm{l}_{\text {LIM }}$ pin will delay regulator shutdown in response to C1, by $\approx(5 \mathrm{~V})\left(\mathrm{C}_{\mathrm{LIM}}\right) / 2 \mathrm{~mA}$. Soft start after full micropower shutdown is ensured by coupling C2 to Q1.

Figure 3. Frequency Shifting

Figure 4. Shutdown Pin Characteristics

Undervoltage Lockout

Undervoltage lockout point is set by R1 and R2 in Figure 6. To avoid errors due to the $10 \mu \mathrm{~A}$ shutdown pin current, $R 2$ is usually set at $5 k$, and $R 1$ is found from:

$$
R 1=R 2 \frac{\left(V_{T P}-V_{S H}\right)}{V_{S H}}
$$

$\mathrm{V}_{\mathrm{TP}}=$ Desired undervoltage lockout voltage.
$\mathrm{V}_{\text {SH }}=$ Threshold for lockout on the shutdown

$$
\operatorname{pin}=2.45 \mathrm{~V} .
$$

If quiescent supply current is critical, R2 may be increased up to $15 \mathrm{k} \Omega$, but the denominator in the formula for R2 should replace $\mathrm{V}_{S H}$ with $\mathrm{V}_{S H}-(10 \mu \mathrm{~A})(\mathrm{R} 2)$.

Hysteresis in undervoltage lockout may be accomplished by connecting a resistor (R3) from the ILIM pin to the shutdown pin as shown in Figure 7. D1 prevents the shutdown divider from altering current limit.

Figure 5. Shutdown Circuitry

Figure 6. Undervoltage Lockout

Figure 7. Adding Hysteresis

PIn DESCRIPTIONS

$$
\text { Trip Point }=V_{T P}=2.35 \mathrm{~V}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

If $R 3$ is added, the lower trip point ($V_{I N}$ descending) will be the same. The upper trip point (VUTP) will be;

$$
V_{U T P}=V_{S H}\left(1+\frac{R 1}{R 2}+\frac{R 1}{R 3}\right)-0.8 V\left(\frac{R 1}{R 3}\right)
$$

If $R 1$ and $R 2$ are chosen, $R 3$ is given by

$$
R 3=\frac{\left(V_{S H}-0.8 V\right)(R 1)}{V_{U T P}-V_{S H}\left(1+\frac{R 1}{R 2}\right)}
$$

Example: An undervoltage lockout is required such that the output will not start until $\mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{~V}$, but will continue to operate until $\mathrm{V}_{\text {IN }}$ drops to 15 V . Let $\mathrm{R} 2=2.32 \mathrm{k}$.

$$
\begin{aligned}
& \mathrm{R} 1=(2.32 \mathrm{k}) \frac{(15 \mathrm{~V}-2.35 \mathrm{~V})}{2.35 \mathrm{~V}}=12.5 \mathrm{k} \\
& \mathrm{R} 3=\frac{(2.35-0.8)(12.5)}{20-2.35\left(1+\frac{12.5}{2.32}\right)}=3.9 \mathrm{k}
\end{aligned}
$$

STATUS PIN (AVAILABLE ONLY ON LT1176 PARTS)

The status pin is the output of a voltage monitor "looking" at the feedback pin. It is low for a feedback voltage which is more than 5% above or below nominal. "Nominal" in this case means the internal reference voltage, so that the $\pm 5 \%$ window tracks the reference voltage. A time delay of $\approx 10 \mu \mathrm{~s}$ prevents short spikes from tripping the status low. Once it does go low, a second timer forces it to stay low for a minimum of $\approx 30 \mu \mathrm{~s}$.

The status pin is modeled in Figure 8 with a $130 \mu \mathrm{~A}$ pullup to a 4.5 V clamp level. The sinking drive is a saturated NPN with $\approx 100 \Omega$ resistance and a maximum sink current of approximately 5 mA . An external pullup resistor can be added to increase output swing up to a maximum of 20 V .
When the status pin is used to indicate "output 0 K ," it becomes important to test for conditions which might create unwanted status states. These include output overshoot, large signal transient conditions, and excessive output ripple. "False" tripping of the status pin can usually be controlled by a pulse stretcher network as shown in Figure 8. A single capacitor (C1) will suffice to delay an output "OK" (status high) signal to avoid false "true" signals during start-up, etc. Delay time for status high will be approximately $\left(2.3 \times 10^{4}\right)(C 1)$, or $23 \mathrm{~ms} / \mu \mathrm{F}$. Status low delay will be much shorter, $\approx 600 \mu \mathrm{~s} / \mu \mathrm{F}$.

Figure 8. Adding Time Delays to Status Output

AN44-13

Application Note 44

PIN DESCRIPTIONS

If false tripping of status "low" could be a problem, R1 can be added. Delay of status high remains the same if R1 \leq $10 \mathrm{k} \Omega$. Status low delay is extended by R1 to approximately R1• C 2 seconds. Select C2 for high delay and R1 for low delay.

Example: Delay status high for 10 ms , and status low for 3 ms .

$$
\begin{aligned}
& \mathrm{C} 2=\frac{10 \mathrm{~ms}}{23 \mathrm{~ms} / \mu \mathrm{F}}=0.47 \mu \mathrm{~F}(\text { Use } 0.47 \mu \mathrm{~F}) \\
& \mathrm{R} 1=\frac{3 \mathrm{~ms}}{\mathrm{C} 2}=\frac{3 \mathrm{~ms}}{0.47 \mu \mathrm{~F}}=6.4 \mathrm{k} \Omega
\end{aligned}
$$

In this example D1 is not needed because R1 is small enough to not limit the charging of C 2 .

If very fast "low" tripping combined with long "high" delays is desired, use the D2, R2, R3, C3 configuration. C3 is chosen first to set "low" delay

$$
\mathrm{C} 3 \approx \frac{\mathrm{t}_{\mathrm{LOW}}}{2 \mathrm{k} \Omega}
$$

R3 is then selected for "high" delay

$$
\mathrm{R} 3 \approx \frac{\mathrm{t}_{\mathrm{HIGH}}}{\mathrm{C} 3}
$$

For $t_{\text {LOW }}=100 \mu \mathrm{~s}$ and $\mathrm{t}_{\text {HIGH }}=10 \mathrm{~ms}, \mathrm{C} 3=0.05 \mu \mathrm{~F}$ and $R 3=200 \mathrm{k} \Omega$.

ILIM PIN

The I ${ }_{\text {LIM }}$ pin is used to reduce current limit below the preset value of 6.5 A . The equivalent circuit for this pin is shown in Figure 9.

When $\mathrm{L}_{\text {Lim }}$ is left open, the voltage at Q1 base clamps at 5 V through D2. Internal current limit is determined by the current through Q1. If an external resistor is connected between lim and ground, the voltage at Q1 base can be reduced for lower current limit. The resistor will have a voltage across it equal to $(320 \mu \mathrm{~A})(R)$, limited to $\approx 5 \mathrm{~V}$ when clamped by D2. Resistance required for a given current limit is

$$
\begin{aligned}
& R_{\text {LIM }}=I_{\text {LIM }}(2 \mathrm{k} \Omega)+1 \mathrm{k} \Omega(\mathrm{LT} 1074) \\
& R_{\text {LIM }}=\operatorname{I}_{\text {LIM }}(5.5 \mathrm{k} \Omega)+1 \mathrm{k} \Omega(\mathrm{LT} 1076)
\end{aligned}
$$

As an example, a $3 A$ current limit would require $3 A(2 k)+$ $1 \mathrm{k}=7 \mathrm{k} \Omega$ for the LT1074. The accuracy of these formulas is $\pm 25 \%$ for $2 \mathrm{~A} \leq \mathrm{I}_{\text {LIM }} \leq 5 \mathrm{~A}$ (LT1074) and $0.7 \mathrm{~A} \leq \mathrm{I}_{\text {LIM }} \leq 1.8 \mathrm{~A}$ (LT1076), so اLIM should be set at least 25% above the peak switch current required.

Figure 9. Lum Pin Circuit

Foldback current limiting can be easily implemented by adding a resistor from the output to the $\mathrm{I}_{\text {LIM }}$ pin as shown in Figure 10. This allows full desired current limit (with or without $\mathrm{R}_{\mathrm{LIM}}$) when the output is regulating, but reduces current limit under short circuit conditions. A typical value for $R_{F B}$ is $5 k \Omega$, but this may be adjusted up or down to set the amount of foldback. D2 prevents the output voltage from forcing current back into the ILIM pin. To calculate a

Figure 10. Foldback Current Limit

PIn DESCRIPTIONS

value for $R_{F B}$, first calculate $R_{\text {LIM }}$, then $R_{F B}$;

$$
R_{F B}=\frac{\left(I_{S C}-0.44^{*}\right)\left(R_{L}\right)}{0.5^{*}\left(R_{L}-1 \mathrm{k} \Omega\right)-I_{S C}}\left(R_{L} \text { ink } \Omega\right)
$$

*Change 0.44 to 0.16 , and 0.5 to 0.18 for LT1076.
Example: $\mathrm{I}_{\mathrm{LIM}}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{SC}}=1.5 \mathrm{~A}, \mathrm{R}_{\mathrm{LIM}}=(4)(2 \mathrm{k})+1 \mathrm{k}=9 \mathrm{k}$

$$
\mathrm{R}_{\mathrm{FB}}=\frac{(1.5-0.44)(9 \mathrm{k} \Omega)}{0.5(9 \mathrm{k}-1 \mathrm{k})-1.5}=3.8 \mathrm{k} \Omega
$$

ERROR AMPLIFIER

The error amplifier in Figure 11 is a single stage design with added inverters to allow the output to swing above and below the common mode input voltage. One side of the amplifier is tied to a trimmed internal reference voltage of 2.21 V . The other input is brought out as the FB (feedback) pin. This amplifier has a G_{M} (voltage "in" to current "out") transfer function of $\approx 5000 \mu \mathrm{mho}$. Voltage gain is determined by multiplying G_{M} times the total equivalent output loading, consisting of the output resistance of Q4 and Q6 in parallel with the series RC external frequency compensation network. At DC, the external RC is ignored, and with a parallel output impedance for Q4 and Q6 of $400 \mathrm{k} \Omega$, voltage gain is ≈ 2000. At frequencies above a few hertz, voltage gain is determined by the external compensation, R_{C} and C_{C}.

$$
\begin{aligned}
& A_{V}=\frac{G_{m}}{2 \pi \bullet f \bullet C_{C}} \text { at midfrequencies } \\
& A_{V}=G_{m} \cdot R_{C} \text { at highfrequencies }
\end{aligned}
$$

Phase shift from the FB pin to the V_{C} pin is 90° at midfrequencies where the external C_{C} is controlling gain, then drops back to 0° (actually 180° since FB is an inverting input) when the reactance of C_{C} is small compared to R_{C}. The low frequency "pole" where the reactance of C_{C} is equal to the output impedance of Q4 and Q6 $\left(\mathrm{r}_{0}\right)$, is

$$
f_{\text {POLE }}=\frac{1}{2 \pi \bullet r_{0} \bullet \mathrm{C}} r_{0} \approx 400 \mathrm{k} \Omega
$$

Although foole varies as much as $3: 1$ due to r_{0} variations, mid-frequency gain is dependent only on G_{M}, which is specified much tighter on the data sheet. The higher frequency "zero" is determined solely by R_{C} and C_{C}.

$$
f_{\text {ZERO }}=\frac{1}{2 \pi \cdot R_{C} \cdot C_{C}}
$$

The error amplifier has asymmetrical peak output current. Q3 and Q4 current mirrors are unity gain, but the Q6 mirror has a gain of 1.8 at output null and a gain of 8 when the FB pin is high ($Q 1$ current $=0$). This results in a maximum positive output current of $140 \mu \mathrm{~A}$ and a maximum negative (sink) output current of $\cong 1.1 \mathrm{~mA}$. The asymmetry is deliberate - it results in much less regulator output overshoot during rapid startup or following the release of an output overload. Amplifier offset is kept low by area scaling Q1 and Q2 at 1.8:1.
Amplifier swing is limited by the internal 5.8 V supply for positive outputs and by D1 and D2 when the output goes low. Low clamp voltage is approximately one diode drop ($\approx 0.7 \mathrm{~V}-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$).
Note that both the FB pin and the V_{C} pin have other internal connections. Refer to the frequency shifting and sychronizing discussions.

Figure 11. Error Amplifier

Application Note 44

DEFINITION OF TERMS

V_{IN} : DC input voltage.
$V_{\mathbb{I N}^{\prime}}$: DC input voltage minus switch voltage loss. $\mathrm{V}_{\mathrm{IN}^{\prime}}$ is 1.5 V to 2.3 V less than $\mathrm{V}_{\mathbb{I}}$, depending on switch current.
$\mathrm{V}_{\text {OUt: }}$ DC output voltage.
$V_{\text {Out': }}$ DC output voltage plus catch diode forward voltage. $\mathrm{V}_{\text {Out }}$ ' is typically 0.4 V to 0.6 V more than $\mathrm{V}_{\text {OUT }}$.
$\mathrm{f}:$ Switching frequency.
I_{M} : Maximum specified switch current $I_{M}=5.5 \mathrm{~A}$ for the LT1074 and 2A for the LT1076.
I_{sw} : Switch current during switch on time. The current typically jumps to a starting value, then ramps higher. I Isw is the average value during this period unless otherwise stated. It is notaveraged over the whole switching period, which includes switch off time.
$I_{\text {Out: }}$ DC output current.
ILIM: DC output current limit.
IDp: Catch diode forward current. This is the peak current for discontinuous operation and the average value of the current pulse during switch offt time for continuous mode.
$I_{D A}$: Catch diode forward current averaged over one complete switching cycle. IDA is used to calculate diode heating.
Δl : Peak-to-peak ripple current in the inductor, also equal to peak current in the discontinuous mode. Δl is used to calculate output ripple voltage and inductor core losses.
Vp-p: Peak-to-peak output voltage ripple. This does not include "spikes" created by fast rising currents and capacitor parasitic inductance.
$\mathrm{t}_{\text {Sw }}$: This is not really an actual rise or fall time. Instead, it represents the effective overlap time of voltage and current in the switch. $\mathrm{t}_{\text {Sw }}$ is used to calculate switch power dissipation.
L: Inductance, usually measured with low AC flux density, and zero DC current. Note that large AC flux density can increase L by up to 30%, and large DC currents can decrease L dramatically (core saturation).
B_{AC} : Peak AC flux density in the inductor core, equal to one-half peak-to-peak AC flux density. Peak value is used because nearly all core loss curves are plotted with peak flux density.
\mathbf{N} : Tapped-inductor or transformer turns ratio. Note the exact definition of N for each application.
μ : Effective permeability of core material used in the inductor. μ is typically $25-150$. Ferrite material is much higher, but is usually gapped to reduce the effective value to this range.
\mathbf{V}_{e} : Effective core material volume $\left(\mathrm{cm}^{3}\right)$.
L_{e} : Effective core magnetic path length (cm).
A_{e} : Effective core cross sectional area (cm^{2}).
A_{w} : Effective core or bobbin winding area.
L_{t} : Average length of one turn on winding.
P_{cu} : Power dissipation caused by winding resistance. It does not include skin effect.
P_{C} : Power loss in the magnetic core. P_{C} depends only on ripple current in the inductor not DC current.

E: Overall regulator efficiency. It is simply output power divided by input power.

POSITIVE STEP-DOWN (BUCK) CONVERTER

The circuit in Figure 12 is used to convert a larger positive input voltage to a lower positive output. Typical waveforms are shown in Figure 13, with $\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{L}=50 \mu \mathrm{H}$, for both continuous mode (inductor current never drops to zero) with IOut = 3A and discontinuous mode, where inductor current drops to zero during a portion of the switching cycle (lout $=0.17 \mathrm{~A}$). Continuous mode maximizes output power but requires larger inductors. Maximumoutput current in true discontinuous mode is only one-half of switch current rating. Note that when load current is reduced in a continuous mode design, eventually the circuit will enter discontinuous mode. The LT1074 operates equally well in either mode and there is no significant change in performance when load current reduction causes a shift to discontinuous mode.

Duty cycle of a buck converter in continuous mode is

$$
\begin{equation*}
D C=\frac{V_{\text {OUT }}+V_{f}}{V_{\text {IN }}-V_{S W}}=\frac{V_{\text {OUT }}^{\prime}}{V_{\text {IN }}^{\prime}} \tag{01}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{f}}=$ Forward voltage of catch diode
$\mathrm{V}_{\mathrm{SW}}=$ Voltage loss across "on" switch
Note that duty cycle does not vary with load current except to the extent that V_{f} and $\mathrm{V}_{\text {SW }}$ change slightly.
A buck converter will change from continuous to discontinuous mode (and duty cycle will begin to drop) at a load current equal to

$$
\begin{equation*}
I_{\text {OUT(CRIT }}=\frac{\left(V_{\text {OUT }}{ }^{\prime}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{2 \bullet V_{\text {IN }} \bullet f \cdot L} \tag{02}
\end{equation*}
$$

With the possible exception of load transient response, there is no reason to increase L to ensure continuous mode operation at light load.
Using the values from Figure 12 , with $\mathrm{V}_{1 \mathrm{~N}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{f}}=0.5 \mathrm{~V}$, $V_{S W}=2 \mathrm{~V}$

$$
\begin{align*}
& D C=\frac{5+0.5}{25-2}=24 \% \tag{03}\\
& \text { IOUT (CRIT) }=\frac{(5.5)(23-5.5)}{2(23)\left(10^{5}\right)\left(50 \times 10^{-6}\right)}=0.42 \mathrm{~A}
\end{align*}
$$

The "ringing" which occurs at some point in the switch "off" cycle in discontinuous mode is simply the resonance created by the catch diode capacitance plus switch capacitance in parallel with the inductor. This ringing does no harm and any attempt to dampen it simply wastes efficiency. Ringing frequency is given by;

$$
\begin{align*}
& \mathrm{f}_{\text {RING }}=\frac{1}{2 \pi \sqrt{L^{\prime} \cdot\left(C_{S W}+C_{\text {DIODE }}\right)}} \tag{04}\\
& C_{S W} \approx 80 \mathrm{pF} \\
& C_{\text {DIODE }}=200 \mathrm{pF}-1000 \mathrm{pF}
\end{align*}
$$

No off state ringing occurs in continuous mode because the diode is always conducting during switch off time and effectively shorts the resonance.
A detailed look at the leading edge of the switch waveform may reveal a second "ringing" tendency, usually at frequencies around $20 \mathrm{MHz}-50 \mathrm{MHz}$. This is the result of the inductance in the loop which includes the input capacitor, the LT1074 leads, and the diode leads, combined with the capacitance of the catch diode. A total lead length of 4 inches will create $\approx 0.1 \mu \mathrm{H}$. This coupled with 500 pF of diode capacitance will create a damped 25 MHz oscillation superimposed on the fast rising switch voltage waveform. Again, no harm is created by this ringing and no attempt should be made to dampen it other than minimizing lead length. Certain board layouts combined with very short interconnects and high diode capacitance may create a tuned circuit which resonates with the switch output to

Figure 13. Buck Converter Waveforms with $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, \mathrm{~L}=50 \mu \mathrm{H}$
cause a low amplitude oscillation at the switch output during "on" time. This can be eliminated with a ferrite bead slipped over either diode lead during board assembly.
It is interesting to note that standard silicon fast recovery diodes create almost no ringing because of their lower capacitance and because they are effectively damped by their slower turn-off characteristics. This slower turn-off and the larger forward voltage represent additional power loss, so Schottky diodes are normally recommended.

Maximum output current of a buck converter is given by;
ContinuousMode
(05)
$I_{\text {OUT(MAX) }}=I_{M}-\frac{V_{\text {OUT }}\left(V_{I N}-V_{O U T}\right)}{2 f \bullet V_{I N} \cdot L}$
$I_{M}=$ Maximum switch current (5.5A for LT1074)
$\mathrm{V}_{\mathrm{IN}}=\mathrm{DC}$ input voltage (maximum)
$\mathrm{V}_{\text {OUT }}=$ Output voltage
$f=$ Switching frequency

For the example shown, with $\mathrm{L}=50 \mu \mathrm{H}$, and $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$,

$$
\begin{equation*}
\mathrm{I}_{\text {Out(MAX })}=5.5-\frac{5(25-5)}{2\left(10^{5}\right)(25)\left(50 \times 10^{-6}\right)}=5.1 \mathrm{~A} \tag{06}
\end{equation*}
$$

Note that increasing inductor size to $100 \mu \mathrm{H}$ would only increase maximum output current by 4%, but decreasing it to $20 \mu \mathrm{H}$ would drop maximum current to 4.5 A . Low inductance can be used for lower output currents, but core loss will increase.

Inductor

The inductor used in a buck converter acts as both an energy storage element and a smoothing filter. There is a basic tradeoff between good filtering versus size and cost. Typical inductor values used with the LT1074 range from $5 \mu \mathrm{H}$ to $200 \mu \mathrm{H}$, with the small values used for lower power, minimum size applications and the larger values used to maximize output power or minimize output ripple voltage. The inductor must be rated for currents at least equal to output current and there are restrictions on ripple current (expressed as volt - microsecond product at various frequencies) to avoid core heating. For details on selecting an inductor and calculating losses, see the "Inductor Selection" section.

Output Catch Diode

D1 is used to generate a current path for L1 current when the LT1074 switch turns off. The current through D1 in continuous mode is equal to output current with a duty cycle of $\left(V_{\text {IN }}-V_{\text {OUT }}\right) N_{\text {IN }}$. For low input voltages, D1 may operate at duty cycles of 50% or less, but one must be very careful of utilizing this fact to minimize diode heat sinking. First, an unexpected high input voltage will cause duty cycle to increase. More important however, is a shorted output condition. When $V_{\text {Out }}=0$, diode duty cycle is ≈ 1 for any input voltage. Also, in current limit, diode current is not load current, but is determined by LT1074 switch current limit. If continuous output shorts must be tolerated, D1 must be adequately rated and heat sunk. 7 and 11 -pin versions of the LT1074 allow current limit to be reduced to limit diode dissipation. 5 -pin versions can be accurately current limited using the technique shown in Figure 20.

Under normal conditions, D1 dissipation is given by;

$$
\begin{equation*}
P_{\text {DI }}=I_{\text {OUT }} \frac{\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }}} \cdot V_{F} \tag{07}
\end{equation*}
$$

V_{f} is the forward voltage of D1 at Iout current. Schottky diode forward voltage is typically 0.6 V at the diode's full rated current, so it is normal design practice to use a diode rated at 1.5 to 2 times output current to maintain efficiency and allow marginfor shortcircuit conditions. This derating allows V_{f} to drop to approximately 0.5 V

Example: $\mathrm{V}_{\text {IN(MAX })}=25 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, assume $\mathrm{V}_{\mathrm{f}}=0.5 \mathrm{~V}$;

Full Load
$\mathrm{P}_{\mathrm{DI}}=\frac{(3)(25-5)(0.5 \mathrm{~V})}{25}=1.2 \mathrm{~W}$
Shorted Output
$P_{\text {DI }}=(\approx 6 \mathrm{~A})(\mathrm{DC}=1)(0.6 \mathrm{~V})=3.6 \mathrm{~W}$
The high diode dissipation under shorted output conditions may necessitate current limit adjustment if adequate heat sinking cannot be provided.
Diode switching losses have been neglected because the reverse recovery time is assumed to be short enough to ignore. If a standard silicon diode is used, switching losses cannot be ignored. They can be approximated by;

$$
\begin{equation*}
\mathrm{Pt}_{\mathrm{rI}} \approx\left(\mathrm{~V}_{\mathrm{IN}}\right)(\mathrm{f})\left(\mathrm{t}_{\mathrm{rr}}\right)\left(\mathrm{l}_{\text {OUT }}\right) \tag{09}
\end{equation*}
$$

$\mathrm{t}_{\text {II }}=$ Diode reverse recovery time
Example: Same circuit with $\mathrm{t}_{\pi}=100 \mathrm{~ns}$

$$
\begin{equation*}
\mathrm{Pt}_{\mathrm{rI}}=(25)\left(10^{5}\right)\left(10^{-7}\right)(3)=0.75 \mathrm{~W} \tag{10}
\end{equation*}
$$

Diodes with abrupt turn-off characteristics will transfer most of this power to the LT1074 switch. Soft recovery diodes will dissipate much of the power within the diode itself.

Application Note 44

LT1074 Power Dissipation

The LT1074 draws about 7.5 mA quiescent current, independent of input voltage or load. It draws an additional 5 mA during switch "on" time. The switch itself dissipates a power approximately proportional to load current. This power is due to pure conduction losses (switch "on" voltage times switch current) and dynamic switching losses due to finite switch current rise and fall times. Total LT1074 power dissipation can by calculated from

$$
\begin{aligned}
\mathrm{P}= & \mathrm{V}_{\text {IN }}\left[7 \mathrm{~mA}+5 \mathrm{~mA} \bullet D C+2 \mathrm{I}_{\text {OUT }} \bullet \mathrm{t}_{\mathrm{SW}} \bullet f\right]+ \\
& D C\left[\mathrm{I}_{\text {OUT }}(1.8 \mathrm{~V})^{\star}+0.1 \Omega^{\star}\left(\mathrm{I}_{\text {OUT }}\right)^{2}\right] \\
D C= & \text { Duty Cycle } \approx \frac{\mathrm{V}_{\text {OUT }}+0.5 \mathrm{~V}}{\mathrm{~V}_{\text {IN }}-2 \mathrm{~V}}
\end{aligned}
$$

$\mathrm{t}_{\text {SW }}=$ Effective overlap time of switch voltage and current

$$
\begin{array}{ll}
\approx 50 \mathrm{~ns}+(3 \mathrm{~ns} / \mathrm{A})\left(\text { l }_{\text {OUT }}\right) & (\text { LT1074 }) \\
\approx 60 \mathrm{~ns}+(10 \mathrm{~ns} / A)\left(l_{\text {OUT }}\right) & (\text { LT1076 })
\end{array}
$$

Example: $V_{\text {IN }}=25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, f=100 \mathrm{kHz}, \mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$

$$
\begin{aligned}
& \mathrm{DC}=\frac{5+0.5}{25-2}=0.196 \\
& \mathrm{t}_{\mathrm{SW}}=50 \mathrm{~ns}+(3 \mathrm{~ns} / \mathrm{A})(3 \mathrm{~A})=59 \mathrm{~ns} \\
& \mathrm{P}= \\
& 25\left[\begin{array}{l}
7 \mathrm{~mA}+5 \mathrm{~mA}(0.196) \\
(2)(3)(59 \mathrm{~ns})\left(10^{5}\right)
\end{array}\right]+0.196\left[3(1.8)+0.1(3)^{2}\right] \\
& =\underbrace{0.21 \mathrm{~W}}_{\begin{array}{c}
\text { Supply } \\
\text { Current } \\
\text { Loss }
\end{array}}+\underbrace{0.8}_{\underbrace{0.89 \mathrm{~W}}_{\text {Dynamic }} \text { Loss }}+\underbrace{1.24 \mathrm{~W}}_{\begin{array}{c}
\text { Switch } \\
\text { Conduction } \\
\text { Loss }
\end{array}}=2.34 \mathrm{~W} \\
& \text { *LT1076 }=1 \mathrm{~V}, 0.3 \Omega
\end{aligned}
$$

Input Capacitor (Buck Converter)

A local input bypass capacitor is normally required for buck converters because the input current is a square wave with fast rise and fall times. This capacitor is chosen by ripple current rating-the capacitor must be large enough to avoid overheating created by its ESR and the AC

RMS value of converter input current. For continuous mode;

$$
\begin{equation*}
I_{A C,} \text { RMS }=I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}\left(V_{N}-V_{\text {OUT }}\right)}{\left(V_{N N}\right)^{2}}} \tag{14}
\end{equation*}
$$

Worst case is at $\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {OUT }}$.
Power loss in the input capacitor is not insignificant in high efficiency applications. It is simply RMS capacitor current squared times ESR.

$$
\begin{equation*}
P_{C 3}=\left(l_{\mathrm{AC}, \mathrm{RMS}}\right)^{2}(\mathrm{ESR}) \tag{15}
\end{equation*}
$$

Example: $V_{\text {IN }}=20 \mathrm{~V}-30 \mathrm{~V}, I_{\text {OUT }}=3 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$.
Worst case is at $V_{\text {IN }}=2 \cdot V_{\text {OUT }}=10 \mathrm{~V}$, so use the closest $\mathrm{V}_{\text {IN }}$ value of 20 V ;

$$
\begin{equation*}
\mathrm{I}_{\mathrm{AC}, \mathrm{RMS}}=3 \mathrm{~A} \sqrt{\frac{5(20-5)}{(20)^{2}}}=1.3 \mathrm{ARMS} \tag{16}
\end{equation*}
$$

The input capacitor must be rated at a working voltage of 30 V minimum and 1.3 A ripple current. Ripple current ratings vary with maximum ambient temperature, so check data sheets carefully.
It is important to locate the input capacitor very close to the LT1074 and to use short leads (radial) when the DC input voltage is less than 12 V . Spikes as high as $2 \mathrm{~V} /$ inch of lead length will appear at the regulator input. If these spikes drop below $\approx 7 \mathrm{~V}$, the regulator will exhibit anomalous behavior. See "VIN Pin" in the Pin Descriptions section.
You may be wondering why no mention has been made of capacitor value. That's because it doesn't really matter. Larger electrolytic capacitors are purely resistive (or inductive) at frequencies above 10 kHz , so their bypassing impedance is resistive, and ESR is the controlling factor. For input capacitors used with the LT1074, a unit which meets ripple current ratings will provide adequate "bypassing" regardless of its capacitance value. Units with higher voltage rating will have lower capacitance for the same ripple current rating, but as a general rule, the volume required to meet a given ripple current/ESR is fixed over a wide range of capacitance/voltage rating. If the capacitor chosen for this application has 0.1Ω ESR, it will have a power loss of $(1.3 A)^{2}(0.1 \Omega)=0.17 \mathrm{~W}$.

Application Note 44

Output Capacitor

In a buck converter, output ripple voltage is determined by both the inductor value and the output capacitor;

Continuous Mode

$$
\begin{equation*}
V_{p-p}=\frac{(E S R)\left(V_{\text {OUT }}\right)\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)}{(L 1)(f)} \tag{17}
\end{equation*}
$$

Discontinuous Mode

$$
V p-p=E S R \sqrt{\frac{\left(2 I_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{L \bullet f \bullet V_{I N}}}
$$

Note that only the ESR of the output capacitor is used in the formula. It is assumed that the capacitor is purely resistive at frequencies above 10 kHz . If an inductor value has been chosen, the formula can be rearranged to solve for ESR to aid in selecting a capacitor.

$$
\begin{align*}
& \text { Continuous Mode } \tag{18}\\
& \qquad \operatorname{ESR}(\mathrm{MAX})=\frac{(\mathrm{Vp}-\mathrm{p})(\mathrm{L} 1)(\mathrm{f})}{\mathrm{V}_{\text {OUT }}\left(1-\frac{V_{\text {OUT }}}{V_{I N}}\right)}
\end{align*}
$$

Discontinuous Mode

$$
\operatorname{ESR}(\mathrm{MAX})=V p-p \sqrt{\frac{L \bullet f \cdot V_{\text {IN }}}{21_{\text {OUT }}\left(V_{\text {OUT }}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)}}
$$

Worst case output ripple is at highest input voltage. Ripple is independent of load for continuous mode and proportional to the square root of load current for discontinuous mode.

Example: Continuous mode with $\mathrm{V}_{\operatorname{IN}(\operatorname{MAX})}=25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ $5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=3 \mathrm{~A}, \mathrm{~L} 1=50 \mu \mathrm{H}, \mathrm{f}=100 \mathrm{kHz}$. Required maximum peak-to-peak output ripple is 25 mV .

$$
\mathrm{ESR}=\frac{(0.025)\left(50 \times 10^{-6}\right)\left(10^{5}\right)}{(5)\left(1-\frac{5}{25}\right)}=0.03 \Omega
$$

A 10 V capacitor with this ESR would have to be several thousand microfarads, and therefore fairly large. Tradeoffs which could be made include;
A. Paralleling several capacitors if component height is more critical than board area.
B. Increasing inductance. This can be done at no increase in size if a more expensive core (molypermalloy, etc.) is used.
C. Adding an output filter. This is often the best solution because the additional components are fairly low cost and their additional space is minimized by being able to "size down" the main Land C. See the "Output Filter" section.

Although ripple current is not usually a problem with buck converter output capacitors because the current is prefiltered by the inductor, a quick check should be done before a final capacitor is chosen-especially if the capacitor has been "downsized" to take advantage of an additional output filter. RMS ripple current into the output capacitor is

Continuous Mode

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RMS}}=\frac{0.29\left(\mathrm{~V}_{\text {OUT }}\right)\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)}{\mathrm{L} \cdot \mathrm{f}} \tag{20}
\end{equation*}
$$

From the previous example:

$$
\begin{equation*}
I_{\text {RMS }}=\frac{0.29(5)\left(1-\frac{5}{25}\right)}{\left(50 \times 10^{-6}\right)\left(10^{5}\right)}=0.23 \mathrm{ARMS} \tag{21}
\end{equation*}
$$

This ripple current is low enough to not be a problem, but that could change if the inductor was reduced by two or three to one and the output capacitor was minimized by adding an output filter.

The calculations for discontinuous mode RMS ripple current were considered too complicated for this discussion, but a conservative value would be 1.5 to 2 times output current.

Application Note 44

To minimize output ripple, the output terminals of the regulator should be connected directly to the capacitor leads so that the diode (D1) and inductor currents do not circulate in output leads.

Efficiency

All the losses except those created by the inductor and the output filter are covered in this buck regulator section. The example used was a $5 \mathrm{~V}, 3 \mathrm{~A}$ output with 25 V input. Calculated losses were: switch, 1.24 W ; diode, 1.2 W ; switching times, 0.89 W ; supply current, 0.21 W ; and input capacitor, 0.17 W . Output capacitor losses were negligible. The sum of all these losses is 3.71 W . Inductor loss is covered in a special section of this Application Note. Assume for this application that inductor copper loss is 0.3 W and core loss is 0.15 W . Total regulator loss is 4.16 W . Efficiency is

$$
\begin{equation*}
E=\frac{I_{\text {OUT }} \cdot V_{\text {OUT }}}{I_{\text {OUT }} \cdot V_{\text {OUT }}+\Sigma P_{\text {L }}}=\frac{(3 A)(5 V)}{(3 A)(5 V)+4.16}=78 \% \tag{22}
\end{equation*}
$$

When considering improvements or tradeoffs of particular loss terms, keep in mind that a change in any one term will be attenuated by efficiency squared. For instance, if switch loss were reduced by 0.3 W , this is 2% of the 15 W output power, but only a $2(0.8)^{2}=1.28 \%$ improvement in efficiency.

Output Divider

R1 and R2 set DC output voltage. R2 is normally set at $2.21 \mathrm{k} \Omega$ (a standard 1% value) to match the LT1074 reference voltage of 2.21 V , giving a divider current of 1 mA . R1 is then calculated from

$$
\begin{equation*}
R 1=\frac{R 2\left(V_{\text {OUT }}-V_{\text {REF }}\right)}{V_{\text {REF }}} \tag{23}
\end{equation*}
$$

If $\mathrm{R} 2=2.21 \mathrm{k} \Omega, \mathrm{R} 1=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{REF}}\right) \mathrm{k} \Omega$
R2 may be scaled in either direction to suit other needs, but an upper limit of $4 \mathrm{k} \Omega$ is suggested to ensure that the frequency shifting action created by the FB pin voltage is maintained under shorted output conditions.

Output Overshoot

Switching regulators often exhibit startup overshoot because the 2-pole LC network requires a fairly low unity gain frequency for the feedback loop. The LT1074 has asymmetrical error amplifier slew rate to help reduce overshoot, but it can still be a problem with certain combinations of L1C1 and C2R3. Overshoot should be checked on all designs by allowing the output to slew from zero in a no-load condition with maximum input voltage. This can be done by stepping the input or by pulling the V_{C} pin low through a diode connected to a $0 \mathrm{~V}-10 \mathrm{~V}$ square wave.

Worst case overshoot can occur on recovery from an output short because the V_{C} pin must slew from its high clamp state down to $\approx 1.3 \mathrm{~V}$. This condition is best checked with the brute force method of shorting and releasing the output.

If excessive output overshoot is found, the procedure for reducing it to a tolerable level is to first try increasing the compensation resistor. The error amplifier output must slew negative rapidly to control overshoot and its slew rate is limited by the compensation capacitor. The compensation resistor, however, allows the amplifier output to "step" downward very rapidly before slewing limitations begin. The size of this step is $\approx(1.1 \mathrm{~mA})\left(R_{C}\right)$. If R_{C} can be increased to $3 \mathrm{k} \Omega$, the V_{C} pin can respond very quickly to control output overshoot.

If loop stability cannot be maintained with $R_{C}=3 \mathrm{k} \Omega$, there are several other solutions. Increasing the size of the output capacitor will reduce short-circuit-recovery overshoot by limiting output rise time. Reducing current limit will also help for the same reason. Reducing the compensation capacitor below $0.05 \mu \mathrm{~F}$ helps because the V_{C} pin can then slew an appreciable amount during the allowable overshoot time.
The "final solution" to output overshoot is to clamp the V_{C} pin so that it does not have to slew as far to shut off the output. The V_{C} pin voltage in normal operation is known fairly precisely because it is made independent of everything except output voltage by the internal multiplier;

$$
\begin{aligned}
& V_{\mathrm{C}} \text { Voltage }=2 \phi+\frac{V_{\text {OUT }}}{24} \\
& \phi=V_{\mathrm{BE}} \text { of internal transistor }=0.65 \mathrm{~V}-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

To allow for transient conditions and circuit tolerances, a slightly different expression is used to calculate clamp level for the V_{C} pin

$$
\begin{equation*}
V_{\mathrm{C}(\mathrm{CLAMP})}=2 \phi+\frac{\mathrm{V}_{\text {OUT }}}{20}+\frac{V_{\text {IN(MAX) }}}{50}+0.2 \mathrm{~V} \tag{25}
\end{equation*}
$$

For a 5 V output with $\mathrm{V}_{\operatorname{IN}(\mathrm{MAX})}=30 \mathrm{~V}$,

$$
\begin{equation*}
V_{C(C L A M P)}=2(0.65)+\frac{5}{20}+\frac{30}{50}+0.2=2.35 \mathrm{~V} \tag{26}
\end{equation*}
$$

There are several ways to clamp the V_{C} pin as shown in Figure 14. The simplest way is to just add a clamp Zener (D3). The problem is finding a low voltage Zener which does not leak badly below the knee. MaximumZener leakage over temperature should be $40 \mu \mathrm{~A} @ \mathrm{~V}_{\mathrm{C}}=2 \phi+\mathrm{V}_{\text {OUT }} / 20 \mathrm{~V}$. One solution is to use an LM385-2.5V micropower reference diode where the calculated clamp level does not exceed 2.5 V .

Figure 14. Clamping the V_{C} Pin
A second clamp scheme is to use a voltage divider and diode (D4). Vx must be some quasi-regulated source which does not collapse with regulator output voltage. A third technique can be used for outputs up to 20 V . It clamps the V_{C} pin to the feedback pin with two diodes, D1 and D2. These are small signal nongold doped-diodes with a forward voltage that matches ϕ. The reason for this is start-up. V_{C} is essentially clamped to ground through the output divider when $\mathrm{V}_{\text {OUT }}=0$. It must be allowed to rise
sufficiently to ensure start-up. The feedback pin will sit at about 0.5 V with $\mathrm{V}_{\text {OUT }}=0$, because of the combined current from the feedback pin and V_{C} pin. The V_{C} voltage will be $2 \phi+0.5 \mathrm{~V}+(0.14 \mathrm{~mA})\left(R_{C}\right)$. With $R_{C}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{C}}=1.94$. This is plenty to ensure start-up.

Overshoot Fixes that Don't Work

I know that these things don't work because I tried them. The first is soft start, created by allowing the output current or the V_{C} voltage to ramp up slowly. The first problem is that a slowly rising output allows more time for the V_{C} pin to ramp up well beyond its nominal control point so that it has to slew farther down to stop overshoot. If the V_{C} pin itself is ramped slowly, this can control input startup overshoot, but it becomes very difficult to guarantee reset of the soft start for all conditions of input sequencing. In any case, these techniques do not address the problem of overshoot following overload of the output, because they do not get "reset" by the output.
Another common practice is to parallel the upper resistor in the output divider with a capacitor. This again works fine under limited conditions, but it is easily defeated by overload conditions which pull the output slightly below its regulated point long enough for the V_{C} pin to hit the positive limit $(\approx 6 \mathrm{~V})$. The added capacitor remains charged and the V_{C} pin must slew almost 5 V to control overshoot when the overload is released. The resulting overshoot is impressive-and often deadly.

TAPPED-INDUCTOR BUCK CONVERTER

Output current of a buck converter is normally limited to maximum switch current, but this restriction can be altered by tapping the inductor as shown in Figure 15. The ratio of "input" turns to "output" turns is "N" as shown in the schematic. The effect of the tap is to lengthen switch "on" time and therefore draw more power from the input without raising switch current. During switch "on" time, current delivered to the output through L1 is equal to switch current-5.5A maximum for the LT1074. When the switch turns off, inductor current flows only in the output section of L1, labeled "1," through D1 to the output. Energy conservation in the inductor requires that current increase by the ratio $(N+1): 1$. If $N=3$, then maximum current delivered to the output during switch off

Figure 15. Tapped-Inductor Buck Converter
time is $(3+1)(5.5 A)=22 A$. Average load current is increased to the weighted average of the 5A and 22A currents. Maximum output current is given by;

$$
\left.\begin{array}{l}
\operatorname{IOUT}(M A X)^{\operatorname{OU}}= \tag{27}\\
0.95\left[I_{\text {SW }}-\frac{\left(V_{\text {IN }}-V_{\text {OUT' }}\right)(1+N)}{2 L f\left(N+\frac{V_{\text {IN }}}{V_{\text {OUT }}}\right)}\right]\left[\frac{N+1}{1+\frac{N \cdot V_{\text {OUT }}}{}} \frac{V_{\text {IN }}}{}\right.
\end{array}\right]
$$

The last term, $(\mathrm{N}+1) /\left(1+\mathrm{N} \cdot \mathrm{V}_{\text {OUT }} N_{\text {IN }}\right)$ is the basic switch current multiplier term. At high input voltages it approaches $\mathrm{N}+1$, and theoretical output current approaches 18 A for $\mathrm{N}=3$. For lower input voltages the multiplier term approaches unity and no benefit is gained by tapping the inductor. Therefore, when calculating maximum load current capability, always use the worst case low input voltage. The 0.95 multiplier is thrown-in to account for second order effects of leakage inductance, etc.
Example: $\mathrm{V}_{\operatorname{IN}(M I N)}=20 \mathrm{~V}, \mathrm{~N}=3, \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, Diode $V_{f}=0.55 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$. Let $\mathrm{I}_{\mathrm{SW}}=$ Maximum for LT1074 $=5.5 \mathrm{~A}, \mathrm{~V}_{0 U T}{ }^{\prime}=5 \mathrm{~V}+0.55 \mathrm{~V}=5.55 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}^{\prime}}=20 \mathrm{~V}-2 \mathrm{~V}$ $=18 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{I}_{\text {OUT(MAX) }}= \\
& 0.95\left[5.5-\frac{(18-5.55)(1+3)}{2\left(10^{-4}\right)\left(10^{5}\right)\left(3+\frac{18}{5.5}\right)}\right]\left[\frac{3+1}{1+\frac{3(5.55)}{18}}\right] \\
& =0.95[5.5-0.4][2.08]=10.08 \mathrm{~A}
\end{aligned}
$$

Duty cycle of the tapped-inductor converter is equal to;

$$
\begin{equation*}
D C=\frac{1+N}{N+\frac{V_{I N^{\prime}}}{V_{\text {OUT }}}} \tag{29}
\end{equation*}
$$

Average and peak diode currents are
$I_{D(A V G)}=\frac{I_{\text {OUT }}\left(V_{\text {IN }}{ }^{\prime}-V_{O U T}{ }^{\prime}\right)}{V_{I N^{\prime}}}$
(Use Maximum $\mathrm{V}_{\text {IN' }}$)
$\left.I_{\text {D(PEAK })}=\frac{I_{\text {OUT }}\left(N V_{\text {OUT }}\right.}{}+V_{\text {IN' }}\right) ~\left(V_{I N}^{\prime}\right.$
(Use Minimum $V_{\text {IN }}$)

Average switch current during switch on time is

$$
\begin{equation*}
I_{\text {SW(AVG })}=\frac{I_{\text {OUT }}\left(N \cdot V_{\text {OUT }}+V_{\text {IN }}\right)}{V_{\text {IN }}(1+N)} \tag{31}
\end{equation*}
$$

(Use Minimum $\mathrm{V}_{\text {IN }}$)
Diode peak reverse voltage is

$$
\begin{align*}
& V_{\text {DI (PEAK })}=\frac{V_{I N}+N \cdot V_{\text {OUT }}}{1+N} \tag{32}\\
& \left(\text { Use Maximum } V_{\text {IN }}\right)
\end{align*}
$$

Switch reverse voltage is
$V_{S W}=V_{\text {IN }}+V_{Z}+V_{\text {SPIKE }}$
(Use Maximum $\mathrm{V}_{\text {IN }}$)
$\mathrm{V}_{\mathrm{Z}}=$ Reverse breakdown of $\mathrm{D} 2(30 \mathrm{~V})$
$\mathrm{V}_{\text {SPIKE }}=$ Narrow (<100ns) spike created by rapid switch turnoff and the stray wiring inductance of $\mathrm{C} 3, \mathrm{D} 2, \mathrm{D} 3$, and the LT1074 $\mathrm{V}_{\mathbb{N}}$ and switch pins. This voltage spike is approximately $\mathrm{I}_{\mathrm{s} w} / 2$ volts per inch of total lead length.
Using parameters from the maximum output current example, with $\mathrm{V}_{\text {IN(MAX })}=30 \mathrm{~V}$, I OUT $=8 \mathrm{~A}$

$$
\begin{align*}
& D C @ V_{I N}=20 \mathrm{~V}=\frac{1+3}{3+\frac{18}{5.55}}=64 \% \tag{34}\\
& I_{D(A V G)}=\frac{(8)(28-5.55)}{28}=6.7 \mathrm{~A} \\
& I_{D(P E A K)} @ V_{I N}=2 O V=\frac{(8)(3 \cdot 5.55+18)}{18}=15.4 \mathrm{~A} \\
& I_{S W(A V G)} @ V_{I N}=20 \mathrm{~V}=\frac{(8)(3 \cdot 5.55+18)}{18(1+3)}=3.85 \mathrm{~A}
\end{align*}
$$

Note that this is the average switch current during "on" time. It must be multiplied by duty cycle and switch voltage drop to obtain switch power loss. Total loss also includes switch fall time (rise time losses are minimal due to leakage inductance in L1).

$$
\begin{align*}
\mathrm{P}_{\text {SWITCH }}= & \left(\mathrm{I}_{\text {IW }}\right)(\mathrm{DC})\left[1.8 \mathrm{~V}+(0.1)\left(\mathrm{I}_{\text {sW }}\right)\right]+ \tag{35}\\
& \left(\mathrm{V}_{\text {IN }}+\mathrm{V}_{Z}\right)\left(\mathrm{I}_{\text {sW }}\right)(\mathrm{f})\left(\mathrm{t}_{\text {sw }}\right) \\
\mathrm{t}_{\text {SW }}= & 50 \mathrm{~ns}+3 \mathrm{~ns} \bullet I_{\text {SW }} \\
= & (3.85)(0.64)[1.8+(0.1)(3.85)]+ \\
& (20+30)(3.85)\left(10^{5}\right)(62 \mathrm{~ns}) \\
= & 5.3 \mathrm{~W}+1.19 \mathrm{~W}=6.5 \mathrm{~W} \\
\mathrm{~V}_{\text {DI (PEAK }}= & \frac{30+3.5}{1+3}=11.25 \mathrm{~V} \tag{36}\\
\mathrm{~V}_{\text {SW }}= & 30+30+\frac{3.85}{2}\left(2^{\prime \prime}\right)^{*}=64 \mathrm{~V}
\end{align*}
$$

*This assumes 2" of lead length

Snubber

The tapped-inductor converter requires a snubber (D2 and D3) to clip off negative switching spikes created by the leakage inductance of L 1 . This inductance $\left(\mathrm{L}_{\mathrm{L}}\right)$ is the value measured between the tap and the switch (N) terminal with the tap shorted to the output terminal. Theoretically, the measured inductance will be zero because the shorted turns reflect " 0 " ohms back to any other terminals. In practice, even with bifilar winding techniques, there is $\geq 1 \%$ leakage inductance compared to total inductance. This is $\approx 1.2 \mu \mathrm{H}$ for the PE-65282. L_{L} is modeled as a separate inductance in series with the " N " section input, which does not couple to the rest of the inductor. This gives rise to a negative spike at the switch pin at switch turnoff. D2 and D3 clip this spike to prevent switch damage, but D2 dissipates a significant amount of power. This power is equal to the energy stored in L_{L} at switch turnoff, $\left(E=\left(I_{\text {Sw }}\right)^{2} \cdot L_{L} / 2\right)$ multiplied by switching frequency and a multiplier term which is dependent on the difference between D2 voltage and the normal reverse voltage swing at the inductor input.

$$
\begin{equation*}
P_{D 2}=\frac{(I \mathrm{IW})^{2} \cdot L_{\mathrm{L}}}{2}(f)\left(\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{~V}_{\mathrm{Z}}-\mathrm{V}_{\text {OUT }} \cdot \mathrm{N}}\right) \tag{37}
\end{equation*}
$$

AN44-25

Application Note 44

For this example;

$$
\begin{align*}
& \mathrm{P}_{\mathrm{D} 2}= \tag{38}\\
& \frac{(3.85)^{2}\left(1.2 \times 10^{-6}\right)\left(10^{5}\right)}{2}\left(\frac{30}{30-5.55 \cdot 3}\right)=2 \mathrm{~W}
\end{align*}
$$

Output Ripple Voltage

Output ripple on a tapped-inductor converter is higher than a simple buck converter because a square wave of current is superimposed on the normal triangular current fed to the output. Peak-to-peak ripple current delivered to the output is:

$$
\begin{align*}
& \mathrm{Ip}-\mathrm{p}= \tag{39}\\
& \frac{\mathrm{I}_{\text {OUT }}\left(\mathrm{N} \cdot \mathrm{~V}_{\text {OUT }}+V_{\text {IN }}\right)(N)}{V_{\text {IN }}(1+N)}+\frac{(1+N)\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{f \bullet L\left(N+\frac{V_{\text {IN }}}{V_{\text {OUT }}}\right)} \\
& \text { (UseMinimum } \left.V_{\text {IN }}\right)
\end{align*}
$$

A conservative approximation of RMS ripple current is one-half of peak-to-peak current.

Output ripple voltage is simply the ESR of the output capacitor multiplied times Ip-p. In this example, with $\mathrm{ESR}=0.03 \Omega$

$$
\begin{equation*}
\mid p-p= \tag{40}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{(8)(3 \cdot 5+20)(3)}{20(1+3)}+\frac{(1+3)(20-5)}{\left(10^{5}\right)\left(10^{-4}\right)\left(3+\frac{20}{5}\right)}=11.4 \mathrm{~A} \\
& \text { I RMS }^{2}=5.7 \mathrm{~A} \\
& V p-p=(0.03)(11.4)=340 \mathrm{mV}
\end{aligned}
$$

This high value of ripple current and voltage requires some thought about the output capacitor. To avoid an excessively large capacitor, several smaller units are paralleled to achieve a combined 5.7A ripple current rating. The ripple voltage is still a problem for many applications. However, to reduce ripple voltage to 50 mV would require an ESR of less than 0.005 W -an impractical value. Instead, an output filter is added which attenuates ripple by more than 20:1.

Input Capacitor

The input bypass capacitor is selected by ripple current rating. It is assumed that all the converter input ripple current is supplied by the input capacitor. RMS input ripple current is approximately

$$
\begin{align*}
& \left.\mathrm{I}_{\text {IN(RMS })} \approx \frac{\left(\mathrm{I}_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)}{\left(V_{\text {IN }}\right)(1+N)} \sqrt{(1+\mathrm{N})\left(\frac{V_{\text {IN }}}{} V_{\text {OUT }}\right.}-1\right) \tag{41}\\
& \left(\text { UseMinimum } V_{\text {IN }}\right) \\
& =\frac{(8)(5.5)}{(18)(1+3)} \sqrt{(1+3)\left(\frac{18}{5.5}-1\right)}=1.84 \mathrm{~A} \mathrm{RMS}
\end{align*}
$$

The input capacitor value in microfarads is not particularly important since it is purely resistive at 100 kHz ; but it must be rated at the required ripple current and maximum input voltage. Radial lead types should be used to minimize lead inductance.

POSITIVE TO NEGATIVE CONVERTER

The LT1074 can be used to convert positive voltages to negative if the sum of input and output voltage is greater than the 8 V minimum supply voltage specification, and the minimum positive supply is 4.75 V . Figure 16 shows the LT1074 used to generate negative 5V. The ground pin of the device is connected to the negative output. This allows the feedback divider, R3 and R4, to be connected in the normal fashion. If the ground pin were tied to ground, some sort of level shift and inversion would be required to generate the proper feedback signal.

Positive to negative converters have a "right half plane zero" in the transfer function which makes them particularly hard to frequency stabilize, especially with low input voltage. R1, R2, and C4 have been added to the basic design solely to guarantee loop stability at low input voltage. They may be omitted for $\mathrm{V}_{\text {IN }}>10 \mathrm{~V}$, or $\mathrm{V}_{\text {IN }} V_{\text {OUT }}$ >2. R1 plus R2 is in parallel with R3 for DC output voltage calculations. Use the following guidelines for these resistors:

$$
\begin{align*}
& \text { R4 }=1.82 \mathrm{k} \tag{42}\\
& \text { R3 }=\left|\mathrm{V}_{\text {OUT }}\right|-2.37 \\
& \text { R1 }=\text { R3 }(1.86) \\
& \text { R2 }=\text { R3 }(3.65)
\end{align*}
$$

If R1 and R2 are omitted:

$$
\begin{align*}
& \text { R4 }=2.21 \mathrm{k} \tag{43}\\
& \text { R3 }=\left|\mathrm{V}_{\text {OUT }}\right|-2.21
\end{align*}
$$

$\mathrm{A}+12 \mathrm{~V}$ to -5 V converter would have $\mathrm{R} 4=2.21 \mathrm{k}$ and $\mathrm{R} 3=$ 2.74 k .

Recommended compensation components would be C3 $=0.005 \mu \mathrm{~F}$ in parallel with a series RC of $0.1 \mu \mathrm{~F}$ and $1 \mathrm{k} \Omega$.
The converter works by charging L1 through the input voltage when the LT1074 switch is "on." During switch "off" time, the inductor current is diverted through D1 to the negative output. For continuous mode operation, duty cycle of the switch is

$$
D C=\frac{V_{\text {OUT }}}{} V_{V_{\mathbb{N}}^{\prime}}+V_{\text {OUT }}
$$

(Use absolute value for $V_{\text {OUT }}$)
Peak switch current for continuous mode is

$$
\begin{aligned}
& \left.I_{S W(P E A K}\right)= \\
& \frac{I_{O U T}\left(V_{I N}^{\prime}+V_{O U T}\right)}{V_{I N^{\prime}}}+\frac{\left(V_{I N^{\prime}}\right)\left(V_{O U T}\right)}{2 f \cdot L\left(V_{I N}+V_{O U T}{ }^{\prime}\right)}
\end{aligned}
$$

To calculate maximum output current for a given maximum switch current (l_{M}) this can be rearranged as;

IOUT(MAX) =
$\frac{V_{\mathbb{I N}^{\prime}}-\left(I_{M}\right)\left(R_{L}\right)}{V_{I N^{\prime}}+V_{\text {OUT }}}\left[I_{M}-\frac{\left(V_{I N^{\prime}}\right)\left(V_{\text {OUT }}^{\prime}\right)}{2 f \bullet L\left(V_{I N}+V_{O U T^{\prime}}\right)}\right]$ (Use Minimum $\mathrm{V}_{\mathbb{N}}{ }^{\prime}$)

$\bullet=1 \%$ FILM RESISTORS D1 $=$ MOTOROLA-MBR745 C1 $=$ NICHICON-UPLTC221MRH6 C2 = NICHICON-UPL1A102MRH6 L1 $=$ COILTRONICS-CTX25-5-52

${ }^{+}$LOWER REVERSE VOLTAGE RATING MAY BE USED FOR LOWER INPUT VOLTAGES. LOWER CURRENT RATING IS ALLOWED FOR LOWER OUTPUT CURRENT.
${ }^{\dagger+}$ LOWER CURRENT RATING MAY BE USED FOR LOWER OUTPUT CURRENT.
" R1, R2, AND C4 ARE USED FOR LOOP FREQUENCY COMPENSATION, BUT R1 AND R2 MUST BE INCLUDED IN THE CALCULATION FOR OUTPUT VOLTAGE DIVIDER VALUES FOR HIGHER OUTPUT VOLTAGES, INCREASE R1, R2 AND R3 PROPORTIONATELY;
R3 $=V_{\text {OUT }}-2.37$ (K Ω) $\mathrm{R} 1=(\mathrm{R} 3)(1.86)$

- MAXIMUM OUTPUT CURRENT OF 1A IS DETERMINED BY MINIMUM INPUT VOLTAGE OF 4.5V. HIGHER MINIMUM INPUT VOLTAGE WILL ALLOW MUCH HIGHER OUTPUT CURRENTS.
Figure 16. Positive to Negative Converter

Note that an extra term $\left(l_{\mathrm{M}} \bullet \mathrm{R}_{\mathrm{L}}\right)$ has been added. This is to account for the series resistance $\left(R_{L}\right)$ of the inductor, which may become a significant loss at low inputvoltages.
Maximum output current is dependent upon input and output voltage, unlike the buck converter which will supply essentially a constant output current. The circuit shown will supply over 4 A at $\mathrm{V}_{\mathbb{I N}}=30 \mathrm{~V}$, but only 1.3 A at $\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$. The IOUT(MAX) equation does not include second order loss terms such as capacitor ripple current, switch rise and fall time, core loss, and outputfilter. These factors may reduce maximum output current by up to 10% at low input and/ or output voltages. Figure 17 shows Iout(max) versus input voltage for various output voltages. It assumes a $25 \mu \mathrm{H}$ inductor for $\mathrm{V}_{\text {OUT }}=-5 \mathrm{~V}, 50 \mu \mathrm{H}$ for $\mathrm{V}_{\text {OUT }}=-12 \mathrm{~V}$, and $100 \mu \mathrm{H}$ for $\mathrm{V}_{\text {OUT }}=-25 \mathrm{~V}$.

Figure 17. Maximum Output Current of Positive to Negative Converter

If absolute minimum circuit size is required and load currents are not too high, discontinuous mode can be used. Minimum inductance required for a specified load is;

$$
\begin{align*}
& \text { Discontinuous Mode } \tag{45}\\
& L_{\text {MIN }}=\frac{2 I_{\text {OUT }}\left(V_{\text {OUT }}\right)}{\left(I_{M}\right)^{2} \cdot f}
\end{align*}
$$

There is a maximum load current that can be supplied in discontinuous mode. Above this current, the formula for $L_{\text {MIN }}$ is invalid. Maximum load current in discontinuous mode is;

Discontinuous Mode
(46)
$I_{\text {OUT(MAX })}=\left(\frac{V_{\text {IN }}{ }^{\prime}}{V_{\text {IN }}{ }^{\prime}+V_{\text {OUT }}}{ }^{\prime}\right)\left(\frac{\text { IM }^{\prime}}{2}\right)$
(Use Minimum $V_{I N}$)
Example: $V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{M}=5 \mathrm{~A}, \mathrm{f}=100 \mathrm{kHz}$, Load Current $=$ 0.5 A . Diode Forward Voltage $=0.5 \mathrm{~V}$, giving $\mathrm{V}_{\text {Out }}=5.5 \mathrm{~V}$. $\mathrm{V}_{\text {IN }}=4.7 \mathrm{~V}$ to 5.3 V . Assume $\mathrm{V}_{\text {IN }}{ }^{\prime}(\mathbf{M I N})=4.7 \mathrm{~V}-2.3 \mathrm{~V}=2.4 \mathrm{~V}$.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OUT}(\mathrm{mAX})}=\left(\frac{2.4}{2.4+5.5}\right)\left(\frac{5}{2}\right)=0.76 \mathrm{~A} \tag{47}
\end{equation*}
$$

The required load current of 0.5 A is less than the maximum of 0.76 A , so discontinuous can be used.

$$
\begin{equation*}
\mathrm{L}_{\text {MIN }}=\frac{2(0.5)(5.5)}{(5)^{2}\left(10^{5}\right)}=2.2 \mu \mathrm{H} \tag{48}
\end{equation*}
$$

To ensure full load current with production variations of frequency and inductance, $3 \mu \mathrm{H}$ should be used.
The formula for minimum inductance assumes a high peak current in the inductor $(\approx 5 \mathrm{~A})$. If the minimum inductance is used, the inductor must be specified to handle the high peak current without saturating. The high ripple current will also cause relatively high core loss and output ripple voltage, so some judgment must be used in minimizing the inductor size. See the "Inductor Selection" section for more details.
To calculate peak inductor and switch current in discontinuous mode, use

$$
\begin{equation*}
I_{\text {PEAK }}=\sqrt{\frac{2 \bullet I_{\text {OUT }} \cdot V_{\text {OUT }}}{L \bullet f}} \tag{49}
\end{equation*}
$$

Input Capacitor

C3 is used to absorb the large square wave switching currents drawn by positive to negative converters. It must have low ESR to handle the RMS ripple current and to avoid input voltage "dips" during switch on time, especially with 5 V inputs. Capacitance value is not particularly important if ripple current and operating voltage requirements are met. RMS ripple current in the capacitor is

Continuous Mode

$I_{\text {RMS }}=I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}}{V_{\text {IN }}}}$
(Use Minimum $V^{\mathbb{I N}}$)

Discontinuous Mode*

$I_{\text {RMS }}=$

$$
\begin{aligned}
& \left.\frac{\left(I_{\text {OUT }}\right)\left(V_{\text {OUT }}\right.}{}\right) \\
& V_{\text {IN' }}^{\prime} \\
& m=\frac{1}{V_{\text {IN }}} \sqrt{\frac{1.35\left(1-\frac{m}{2}\right)^{3}}{m}+0.17 \mathrm{~m}^{2}+1-\mathrm{m}} \\
& \text { OUT } V_{\text {OUT }}
\end{aligned}
$$

*This formula is a test for calculator students
Examples: A continuous mode design with $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $V_{\text {OUT }}=-5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}{ }^{\prime}=5.5 \mathrm{~V}$, and $\mathrm{V}_{\text {IN }}{ }^{\prime}=10 \mathrm{~V}$.

$$
\begin{equation*}
I_{\mathrm{RMS}}=(1) \sqrt{\frac{5.5}{10}}=0.74 \mathrm{ARMS} \tag{52}
\end{equation*}
$$

Now change to a discontinuous design with the same conditions and $\mathrm{L}=5 \mu \mathrm{H}, \mathrm{f}=100 \mathrm{kHz}$.

$$
\begin{aligned}
& \mathrm{m}=\frac{1}{10} \sqrt{(2)\left(10 \times 10^{-6}\right)(105)(1)(5.5)}=0.33 \\
& \mathrm{I}_{\text {RMS }}=\frac{(1)(5.5)}{10} \sqrt{\frac{1.35(1-0.165)^{3}}{0.33}+} \\
& =0.96 \mathrm{ARMS}
\end{aligned}
$$

Notice that discontinuous mode saves on inductor size, but may require a a larger input capacitor to handle the ripple current increase. The 30\% increases in ripple current generates 70% more heating in the capacitor ESR.

Output Capacitor

The inductor on a positive to negative converter does not operate as a filter. It simply acts as an energy storage device so that energy can be transferred from input to output.

Therefore, all filtering is done by the output capacitor, and it must have adequate ripple current rating and low ESR. Output ripple voltage for continuous mode will contain three distinct components; a "spike" on switch transitions which is equal to the rate of rise/fall of switch current multiplied by the effective series inductance (ESL) of the output capacitor, a square wave proportional to load current and capacitor ESR, and a triangular component dependent on inductor value and ESR. The spikes are very narrow, typically less than 100 ns , and often "disappear" in the parasitic filter created by the inductance of $P C$ board traces between the converter and load combined with the load bypass capacitors. One must be extremely careful when looking at these spikes with an oscilloscope. The magnetic fields created by currents transitions in converter wiring will generate "spikes" on the screen even when they do not exist at the converter output. See the "Oscilloscope Techniques" section for details.
The peak-to-peak sum of square wave and triangular output ripple voltage is
$\mathrm{V} p-\mathrm{p}=$
ESR $\left[\frac{I_{\text {OUT }}\left(V_{\text {IN }}+V_{\text {OUT }}\right)}{V_{\text {IN }}^{\prime}}+\frac{\left(V_{\text {OUT }}{ }^{\prime}\right)\left(V_{\text {IN }}^{\prime}\right)}{2\left(V_{\text {OUT }}+V_{\text {IN }}\right)(f)(L)}\right]$
(Use Minimum $\mathrm{V}_{1 \mathrm{~N}}$)
Example: $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-5 \mathrm{~V}, \mathrm{~L}=25 \mu \mathrm{H}, \mathrm{I}_{\text {OUT(MAX }}=1 \mathrm{~A}$, $f=100 \mathrm{kHz}$. Assume $\mathrm{V}_{\mathrm{IN}^{\prime}}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}{ }^{\prime}=5.5 \mathrm{~V}$, and $\mathrm{ESR}=$ 0.05Ω.

$$
\begin{aligned}
& V p-p= \\
& 0.05\left[\frac{(1)(2.8+5.5)}{2.8}+\frac{(5.5)(2.8)}{2(5.5+2.8)\left(10^{5}\right)\left(25 \times 10^{-6}\right)}\right] \\
& =172 \mathrm{mV}
\end{aligned}
$$

For some applications this rather high ripple voltage may be acceptable, but more commonly it will be necessary to reduce ripple voltage to 50 mV or less. This may be impractical to achieve simply by reducing ESR, so an output filter (L2, C4) is shown, The filter components are relatively smail and low cost, both of which are additionally offset by possible reduction in the size of the main output capacitor C1. See the "Output Filters" section for details.

Application Note 44

C1 must be chosen for ripple current as well as ESR. Ripple current into the output capacitor is given by;

Continuous Mode
$I_{\text {RMS }}=I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}}{V_{\text {IN }}^{\prime}}}$

Discontinuous Mode
$I_{\text {RMS }}=$
$I_{\text {OUT }} \sqrt{\frac{0.67\left(I_{p}-I_{\text {OUT }}\right)^{3}}{I_{\text {OUT }}\left(I_{P}\right)^{2}}+\frac{0.67\left(I_{\text {OUT }}\right)^{2}}{\left(I_{P}\right)^{2}}+1-\frac{2 I_{\text {OUT }}}{I_{p}}}$
Where $I_{p}=$ Peak InductorCurrent

$$
=\sqrt{\frac{21_{\text {OUT }}\left(V_{\text {OUT }}{ }^{\prime}\right)}{L \bullet f}}
$$

For the Continuous Mode example

$$
\begin{equation*}
I_{\mathrm{RMS}}=(1 \mathrm{~A}) \sqrt{\frac{5.5}{2.8}}=1.4 \mathrm{ARMS} \tag{58}
\end{equation*}
$$

With Discontinuous Mode using a $3 \mu \mathrm{~A}$ inductor, with $I_{\text {OUT }}=0.5 \mathrm{~A}$

$$
\begin{aligned}
& =I_{p}=\sqrt{\frac{(2)(0.5)(5.5)}{\left(3 \times 10^{-6}\right)\left(10^{5}\right)}}=4.28 \mathrm{~A} \\
& I_{\mathrm{RMS}}= \\
& (0.5) \sqrt{\frac{(0.67)(4.28-0.5)^{3}}{(0.5)(4.28)^{2}}+\frac{(0.67)(0.5)^{2}}{(4.28)^{2}}+1-\frac{2(0.5)}{4.28}} \\
& =1.09 \mathrm{ARMS}
\end{aligned}
$$

Notice that output capacitor ripple current is over twice the DC output current in this discontinuous example. The smaller inductor size obtained by discontinuous mode may be somewhat offset by the larger capacitors required on input and output to meet ripple current conditions.

Efficiency

Efficiency for this positive to negative converter can be quite high for larger input and output voltages ($>90 \%$), but
can be much lower for low input voltages. Losses are summarized below for a continuous mode design. Discontinuous losses are much more difficult to express analytically, but will typically be 1.2 to 1.3 times higher than in continuous mode.

Conduction loss in switch $=\mathrm{P}_{\mathrm{SW}}(\mathrm{DC})$

$$
\begin{align*}
& \mathrm{P}_{\mathrm{SW}}(\mathrm{DC})= \tag{60}\\
& \frac{\left(l_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)}{V_{\text {IN }}{ }^{\prime}}\left[1.8 \mathrm{~V}+\frac{(0.1)\left(\text { I }_{\text {OUT }}\right)\left(V_{\text {OUT }}{ }^{\prime}+V_{\text {IN }}{ }^{\prime}\right)}{V_{\text {IN }}{ }^{\prime}}\right]
\end{align*}
$$

Transient switch loss $=\mathrm{P}_{\mathrm{SW}}(\mathrm{AC})$

$$
\begin{equation*}
P_{\text {SW }}(A C)=\frac{I_{\text {OUT }}\left(V_{\text {OUT }}{ }^{\prime}+V_{\text {IIN }^{\prime}}\right)^{2} 2\left(t_{\text {SW }}\right)(f)}{V_{\text {IN }}} \tag{61}
\end{equation*}
$$

Where $\mathrm{t}_{\text {SW }}=50 \mathrm{nS}+3 \mathrm{nS}\left(\mathrm{V}_{\text {OUT }}{ }^{\prime}+\mathrm{V}_{\text {IN }}{ }^{\prime}\right) / V_{\text {IN }}$. The LT1074 quiescent current generates a loss called $\mathrm{P}_{\text {SUPPLY }}$

$$
\begin{equation*}
P_{\text {SUPPLY }}=\left(V_{I N}{ }^{\prime}+V_{\text {OUT }}{ }^{\prime}\right)\left[\frac{7 m A+5 m A\left(V_{\text {OUT }}{ }^{\prime}\right)}{\left(V_{\text {OUT }}+V_{\text {IN }}{ }^{\prime}\right)}\right] \tag{62}
\end{equation*}
$$

Catch diode loss $=P_{D I}=\left(I_{\text {OUT }}\right)\left(V_{f}\right)$
Where $\mathrm{V}_{\mathrm{f}}=$ Forward Voltage of D 1 at a current equal to;

$$
I_{\text {OUT }}\left(V_{\text {OUT }}^{\prime}+V_{I N}{ }^{\prime}\right) N_{I N^{\prime}}
$$

Capacitor losses can be found by calculating RMS ripple current and multiplying by capacitor ESR. Inductor losses are the sum of copper (wire) loss and core loss

$$
\begin{equation*}
P_{L 1}=R_{L}\left[\frac{\left(I_{\text {OUT }}\right)\left(V_{O U T}{ }^{\prime}+V_{I N^{\prime}}\right)}{V_{I N}^{\prime}}\right]^{2}+P_{\text {CORE }} \tag{63}
\end{equation*}
$$

$R_{L}=$ Inductor Copper Resistance
$P_{\text {CORE }}$ can be calculated if the inductor core material is known. See the "Inductor Selection" section.
Example: $V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1.5 \mathrm{~A}, \mathrm{f}=100 \mathrm{kHz}$. Let $\mathrm{L} 1=50 \mu \mathrm{H}$, with $\mathrm{R}_{\mathrm{L}}=0.04 \Omega$. Assume ESR of input and output capacitor is $0.05 \Omega . \mathrm{V}_{\mathbb{N}}^{\prime}=12 \mathrm{~V}-2 \mathrm{~V}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}{ }^{\prime}=$ $12 \mathrm{~V}+0.5 \mathrm{~V}=12.5 \mathrm{~V}$.

$$
\begin{align*}
& P_{\text {SW }}(D C)= \tag{64}\\
& \frac{(1.5)(12.5)}{10}\left[1.8+\frac{(0.1)(1.5)(12.5+10)}{10}\right]=4 \mathrm{~W} \\
& P_{\text {SW }}(A C)= \\
& \frac{(1.5)(12.5+10.5)^{2}}{10}\left[2(50 \mathrm{~ns}+3 \mathrm{~ns}) \frac{(12.5+10)}{10}\right]\left(10^{5}\right) \\
& =0.86 \mathrm{~W} \\
& P_{\text {SUPPLY }}=(12+12)\left[7 \mathrm{~mA}+\frac{5 \mathrm{~mA}(12.5)}{12.5+10}\right]=0.23 \mathrm{~W} \\
& P_{D I}=(1.5)(0.5)=0.75 W \\
& I_{\text {RMS }(\text { INPUT CAP })}=1.5 \sqrt{\frac{12.5}{10}}=1.68 \mathrm{~A} \text { RMS } \\
& P_{C 3}=(1.68)^{2}(0.05)=0.14 W \\
& I_{\text {RMS (OUTPUT CAP) }}= \\
& \text { IOUT } \sqrt{\frac{(12.5)^{2}+(12.5)(10)}{(10)(12.5+10)}}=1.68 \text { A RMS } \\
& P_{C 1}=(1.68)^{2}(0.05)=0.14 W \\
& P_{L 1}=0.04\left[\frac{(1.5)(12.5+10)}{10}\right]^{2}=0.46 \mathrm{~W} \\
& \text { Assume } P_{\text {CORE }}=0.2 \mathrm{~W} \\
& \text { Efficiency }=\frac{\text { IOUT }^{\text {V }} \text { OUT }}{I_{\text {OUT }} V_{\text {OUT }}+\Sigma P_{\text {LOSS }}} \\
& \Sigma P_{\text {LOSS }}=4+0.86+0.23+0.75+0.14+0.14+0.46+ \\
& 0.2=6.78 \mathrm{~W} \\
& \text { Efficiency }=\frac{(1.5)(12)}{(1.5)(12)+6.78}=73 \%
\end{align*}
$$

NEGATIVE BOOST CONVERTER

Note: All equations in this section use the absolute value of $V_{I N}$ and $V_{\text {OUT }}$.

The LT1074 can be configured as a negative boost converter (Figure 18) by tying the ground pin to the negative output. This allows the regulator to operate from input voltages as low as 4.75 V if the regulated output is at least 8 V . R1 and R2 set the output voltage as in a conventional connection, with R1 selected from

$$
\begin{equation*}
R 1=\frac{V_{\text {OUT }} \cdot R 2}{V_{\text {REF }}}-R 2 \tag{65}
\end{equation*}
$$

Boost converters have a "right half plane zero" in the forward part of the signal path and for this reason, L1 is kept to a low value to maximize the "zero" frequency. With larger values for L1, it becomes difficult to stabilize the regulator, especially at low input voltages. If $\mathrm{V}_{\mathrm{IN}}>10 \mathrm{~V}, \mathrm{L1}$ can be increased to $50 \mu \mathrm{H}$.

There are two important characteristics of boost converters to keep in mind. First, the input voltage cannot exceed the output voltage, or D1 will simply pull the output unregulated high. Second, the output cannot be pulled below the input, or D1 will drag down the input supply. For this reason, boost converters are not normally considered short circuit protected unless some form of fusing is provided. Even with fuses, there is the possibility of damage to D1 if the input supply can deliver very large surge currents.
Boost converters require switch currents which can be much greater than output load current. Peak switch current is given by

$$
\begin{equation*}
\left.I_{S W(P E A K)}=\frac{I_{\text {OUT }} \bullet V_{O U T}^{\prime}}{V_{\mathbb{N}}}+\frac{V_{\mathbb{N}^{\prime}}\left(V_{O U T}\right.}{}-V_{\mathbb{N}^{\prime}}\right) \tag{66}
\end{equation*}
$$

For the circuit in Figure 18 , with $\mathrm{V}_{I N}=5 \mathrm{~V},\left(\mathrm{~V}_{1 N} \approx 3 \mathrm{~V}\right)$, $V_{\text {OUT }}{ }^{\prime} \approx 15.5 \mathrm{~V}$, with an output load of 0.5 A ;

$$
\begin{align*}
& I_{\text {SW (PEAK })}= \tag{67}\\
& \frac{(0.5 \mathrm{~A})(15.5)}{3}+\frac{3(15.5-3)}{2(25 \mu \mathrm{H})\left(10^{5}\right)(15.5)}=3.07 \mathrm{~A}
\end{align*}
$$

This formula can be rearranged to yield maximum load current for a given maximum switch current (l_{M})

$$
\begin{equation*}
I_{\text {OUT (MAX) }}=\frac{I_{M} \bullet V_{I N}^{\prime}}{V_{\text {OUT }}}-\left(\frac{V_{I N}}{V_{\text {OUT }}^{\prime}}\right)^{2} \frac{V_{O U T}-V_{I N^{\prime}}}{2 L \bullet f} \tag{68}
\end{equation*}
$$

For $\mathrm{I}_{\mathrm{M}}=5.5 \mathrm{~A}$, this equation yields 0.82 A with $\mathrm{V}_{I N}=4.5 \mathrm{~V}$, 1.8 A with $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$, and 3.1 A for $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$.

The explanation for switch current which is much higher than output current is that current is delivered to the output only during switch "off" time. With low input voltages, the switch is "on" a high percentage of the total switching cycle and current is delivered to the output only a small percent of the time. Switch duty cycle is given by

Figure 18. Negative Boost Converter

$$
\begin{equation*}
D C=\frac{V_{\text {OUT }}{ }^{\prime}-V_{\text {IN }}^{\prime}}{V_{\text {OUT }}{ }^{\prime}} \tag{69}
\end{equation*}
$$

For $\mathrm{V}_{\mathbb{N}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}{ }^{\prime} \approx 3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}{ }^{\prime}=15.5 \mathrm{~V}$ and;

$$
\begin{equation*}
D C=\frac{15.5-3}{15.5}=81 \% \tag{70}
\end{equation*}
$$

Peak inductor current is equal to peak switch current. Average inductor current in continuous mode is equal to

$$
\begin{equation*}
I_{L(A V G)}=\frac{I_{O U T} \cdot V_{O U T}}{V_{I N}^{\prime}} \tag{71}
\end{equation*}
$$

A 0.5 A load requires 2.6 A inductor current for $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$.

Along with high switch currents, keep in mind that boost converters draw DC input currents higher than the output load current. Average input current to the converter is

$$
\begin{equation*}
I_{\text {IN }}(D C) \approx \frac{\left(I_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)}{V_{\text {IN }}} \tag{72}
\end{equation*}
$$

With $\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}$, and $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}\left(\mathrm{~V}_{\text {IN }} \approx 3 \mathrm{~V}\right)$

$$
\begin{equation*}
I_{\mathbb{N}}(D C)=\frac{(0.5)(15.5)}{3}=2.6 \mathrm{~A} \tag{73}
\end{equation*}
$$

This formula does not take into account secondary loss terms such as the inductor, output capacitor, etc., so it is
somewhat optimistic. Actual input current may be closer to 3A. Be sure the input supply is capable of providing the required boost converter input current.

Output Diode

The average current through D1 is equal to output current, but the peak pulse current is equal to peak switch current, which can be many times output current. D1 should be conservatively rated at 2 to 3 times output current.

Output Capacitor

The output capacitor of a boost converter has high RMS ripple current so this is often the deciding factor in the selection of $\mathrm{C1}$. RMS ripple current is approximately

$$
\begin{equation*}
I_{\text {RMS }(C 1)} \approx I_{\text {OUT }} \sqrt{\frac{V_{\text {OUT }}{ }^{\prime}-V_{\text {IN }}}{V_{\text {IN }}^{\prime}}} \tag{74}
\end{equation*}
$$

For $\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{RMS}} \approx 0.5 \sqrt{\frac{15.5-3}{3}}=1 \mathrm{ARMS} \tag{75}
\end{equation*}
$$

C1 must have a ripple current rating of 1 A RMS. Its actual capacitance value is not critical. ESR of the capacitor will determine output ripple voltage.

Output Ripple

Boost converters tend to have high output ripple because of the high pulse currents delivered to the output capacitor.

$$
\begin{equation*}
V_{p}-p=E S R\left[\frac{I_{\text {OUT }} \cdot V_{\text {OUT }}^{\prime}}{V_{\text {IN }}^{\prime}}+\frac{V_{\text {IN }}{ }^{\prime}\left(V_{\text {OUT }}-V_{\text {IN }}{ }^{\prime}\right)}{2 L \bullet f \bullet V_{\text {OUT }}{ }^{\prime}}\right] \tag{76}
\end{equation*}
$$

This formula assumes continuous mode operation, and it ignores the inductance of C1. In actual operation, C1 inductance will allow output "spikes" which should be removed with an output filter. The filter can be as simple as several inches of output wire or trace and a small solid tantalum capacitor if only the spikes need to be removed. A filter inductor is required if significant reduction of the fundamental is needed. See the "Output Filter" section.
For the circuit in Figure 18, with I OUT $=0.5 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$; and an output capacitor ESR of 0.05Ω

$$
\begin{aligned}
& V p-p= \\
& 0.05\left[\frac{(0.5)(15.5)}{3}+\frac{3(15.5-3)}{2\left(25 \times 10^{-6}\right)\left(10^{5}\right)(15.5)}\right]=153 \mathrm{mV}
\end{aligned}
$$

Input Capacitor

Boost converters are more benign with respect to input current pulsing than buck or inverting converters. The input current is a DC level with a triangular ripple superimposed. RMS value of input current ripple is

$$
\begin{equation*}
\mathrm{I}_{\text {RMS }(C 3)} \approx \frac{V_{\text {IN }}\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{3 L \bullet f \bullet V_{\text {OUT }}} \tag{78}
\end{equation*}
$$

Notice that ripple current is independent of load current assuming that load current is high enough to keep the converter in continuous mode. For the converter in Figure 18 , with $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

$$
\begin{equation*}
\mathrm{I}_{\text {RMS }}=\frac{3(15.5-3)}{3\left(25 \times 10^{-6}\right)\left(10^{5}\right)(15.5)}=0.32 \mathrm{ARMS} \tag{79}
\end{equation*}
$$

C3 may be chosen on a ripple current basis to minimize size. Larger values will allow less conducted EMI back into the input supply.

INDUCTOR SELECTION

There are five main criteria in selecting an inductor for switching regulators. First, and most important, is the actual inductance value. If inductance is too low, output power will be restricted. Too much inductance results in large physical size and poor transient response. Second, the inductor must be capable of handling both RMS and peak currents which may be significantly higher than load current. Peak currents are limited by core saturation, with resultant loss of inductance. RMS currents are limited by heating effects in the winding. Also important is peak-topeak current which determines heating effects in the core itself. Third, the physical size or weight of the inductor may be important in many applications. Fourth, power losses in the inductor can significantly affect regulator efficiency, especially at higher switching frequencies. Last, the price of inductors is very dependent on particular construction techniques and core materials, which impact overall size, efficiency, mountability, EMI, and form factor. There may be a significant cost penalty, for instance, if more expensive core materials are needed in "minimum size" applications.

The issues of price and size become particularly complicated at higher frequencies. High frequencies are used to reduce component size, and indeed, the inductance values required scale inversely with frequency. The problem with a scaled-down high frequency inductor is that total core loss increases slightly with frequency for constant ripple current, and this power is now dissipated in a smaller core, so temperature rise and efficiency can limit size reductions. Also, the smaller core has less room for wire, so wire losses may increase. The only solution to this problem is to find a better core material. Common low cost inductors use powdered iron cores, which are very low cost. These cores exhibit modest losses at 40 kHz with a typical flux density of 300 gauss. At 100 kHz , core losses can become unacceptably high at these flux densities. Reducing flux density requires a larger core, canceling part of the advantage gained in reducing inductance at the higher frequency.
Molypermalloy, "high flux," "Kool Mu" (Magnetics, Inc.), and ferrite cores have considerably lower core loss, and can be used at 100 kHz and above with higher flux density, but these cores are expensive. The basic lesson here is that attention to inductor selection is very important to minimize costs and achieve desired goals of size and efficiency.

Application Note 44

A special equation has been developed in the following section which shows that for a given core material, total core loss is dependent almost totally on frequency and inductance value, not physical size or shape. The formula is arranged to solve for the inductance required to achieve a given core loss. It shows that, in a typical 100 kHz buck converter, inductance has to be increased by a factor of three over the minimum required, if a low cost powdered iron core is used.
"Standard" switching regulator inductors are toroids. Although this shape is hardest to wind, it offers excellent utilization of the core, and more importantly, has low EMI fringing fields. Rod or drum shaped inductors have very high fringing fields and are not recommended except possibly for secondary output filters. Inductors made with "E-E" or "E-C" split cores are easy to wind on the separate bobbin, but tend to be much taller than toroids and more expensive. "Pot" cores reverse the position of winding and core-the core surrounds the winding. These cores offer the best EMI shielding, but tend to be bulky and more expensive. Also, temperature rise is higher because of the enclosed winding. Special low profile split cores (TDK "EPC," etc.) are now offered in a wide range of sizes. Although not as efficient as EC cores in terms of watts/ volume, these cores are attractive for restricted height applications.
The best way to select an inductor is to first calculate the limitations on its minimum value. These limitations are imposed by a maximum allowed switch current, maximum allowable efficiency loss, and the necessity to operate in continuous versus discontinuous mode. (See discussion elsewhere of the consequences related to these two modes.) After the minimum value has been established, calculations are done to establish the operating conditions of the inductor; i.e., RMS current, peak-to-peak ripple current, and peak current. With this information, next select an "off the shelf" inductor which meets all the calculated requirements, or is reasonably close, Then ascertain the physical size and price of the selected inductor. If it fits in the allowed "budget" of space, height, and cost, you can then give some consideration to increasing the inductance to gain better efficiency, lower output ripple, lower input ripple, more output power, or some combination of these. If the selected inductor is physically too large, there are several possibilities; select
a different core shape, a different core material, (which will require recalculating the minimum inductance based on efficiency loss), a higher operating frequency, or consider a custom wound inductor which is optimized for the application. Keep in mind when attempting to shoehorn an inductor into the smallest possible space that output overload conditions may cause currents to increase to the point of inductor failure. The major failure mode to consider is winding insulation failure due to high winding temperature. IC failure caused by loss of inductance due to core saturation or core temperature is not usually a problem because the LT1074 has pulse-by-pulse current limiting which is effective even with drastically lowered inductance.

The following equations solve for minimum inductance based on the assumption of limited peak switch current (I_{M}).

Minimum Inductance to Achieve a Required Output Power

Buck Mode Discontinuous, $I_{\text {OuT }} \leq \frac{I_{M}}{2}$, Use Maximum $V_{\text {IN }}$
$\mathrm{L}_{\text {MIN }}=\frac{2 \cdot \text { I OUT } \cdot \mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN' }}-\mathrm{V}_{\text {OUT }}\right)}{f\left(I_{\text {M }}\right)^{2}\left(\mathrm{~V}_{\text {IN }}\right)}$
Buck Mode Continuous, I I
$L_{\text {MIN }}=\frac{V_{\text {OUT }}\left(V_{\text {IN }}^{\prime}-V_{\text {OUT }}\right)}{2 \bullet f \cdot V_{\text {IN }}\left(I_{\text {M }}-I_{\text {OUT }}\right)}$

$$
\begin{equation*}
\text { Inverting Mode Discontinuous, } \mathrm{I}_{\text {OUT }} \leq \frac{I_{M} \bullet V_{I N}}{2\left(\mathrm{~V}_{\text {IN }}^{\prime}+V_{\text {OUT }}{ }^{\prime}\right)} \tag{82}
\end{equation*}
$$

$\mathrm{L}_{\text {MIN }}=\frac{2 \cdot \mathrm{I}_{\text {OUT }} \cdot V_{\text {OUT }}}{\left(\mathrm{I}_{\mathrm{M}}\right)^{2} \cdot f}$
Inverting Mode Continuous, IOUT $^{\leq} \leq \frac{I_{M} \bullet V_{I N}}{\left(V_{I N^{\prime}}+V_{O U T}{ }^{\prime}\right)}$
$L_{\text {MIN }}=\frac{\left(V_{\text {IN }}\right)^{2} \cdot V_{\text {OUT }}}{2 \bullet f\left(V_{\text {OUT }}+V_{I N^{\prime}}\right)^{2}\left(\frac{I_{M} \cdot V_{\text {IN }}}{V_{\text {IN }}+V_{\text {OUT }}}-I_{\text {OUT }}\right)}$
Boost Mode Discontinuous, $\mathrm{I}_{\text {OUT }} \leq \frac{I_{\mathrm{M}} \bullet \mathrm{V}_{\text {IN }}}{2 \bullet \mathrm{~V}_{\text {OUT }}}$

$$
\begin{equation*}
\mathrm{L}_{\text {MIN }}=\frac{2 \cdot \operatorname{IOUTT}\left(\mathrm{~V}_{\text {OUT }}-V_{\text {IN }}\right)}{\left(I_{\mathrm{M}}\right)^{2} \bullet f} \tag{84}
\end{equation*}
$$

$$
\begin{align*}
& \text { Boost Mode Continuous, } \mathrm{I}_{\mathrm{OUT}} \leq \frac{{ }^{\mathrm{M}} \bullet \mathrm{~V}_{\mathbb{N}^{\prime}}}{\mathrm{V}_{\text {OUT }}} \tag{85}
\end{align*}
$$

$$
\begin{align*}
& \text { Tapped Inductor Continuous, } \mathrm{I}_{\text {OUT }} \leq \frac{\operatorname{lm}(\mathrm{N}+1)\left(\mathrm{ViN}^{\prime}\right)}{\mathrm{V}_{\mathrm{IN}}{ }^{\prime}+\mathrm{N} \mathrm{~V}_{\text {OUT }}{ }^{\prime}} \tag{86}\\
& L_{\text {MIN }}=\quad V_{\text {IN }} \cdot V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)(N+1)^{2} \\
& \overline{1 M \bullet 2 f} \bullet V_{N}(N+1)\left(V_{N}+N V_{\text {OUT }}\right)-\operatorname{lout}\left(V_{N}+N V_{\text {OUT }}\right)^{2}(2 f)
\end{align*}
$$

Minimum Inductance Required to Achieve a Desired Core Loss

Power loss in inductor core material is not intuitive at all. It is, to a first approximation, independent of the size of the core for a given inductance and operating frequency. Second, power loss drops as inductance increases, for constant frequency. Last, raising frequency with a given inductor will decrease core loss, even though manufacturer's curves show that core loss increases with frequency. These curves assume constant flux density, which is not true for a fixed inductance.
The general formula for core loss can be expressed as;

$$
\begin{equation*}
P_{C}=C \cdot B_{A C}^{p} \cdot f^{d} \cdot V_{C} \tag{87}
\end{equation*}
$$

C, d, p=Constants (see Table 1)
$\mathrm{B}_{\mathrm{AC}}=$ Peak AC Flux Density ($1 / 2$ peak-to-peak) (gauss)
$\mathrm{f}=$ Frequency
$\mathrm{V}_{\mathrm{C}}=$ Core Volume $\left(\mathrm{cm}^{3}\right)$
The exponent "p" falls in the range of $1.8-2.4$ for powdered iron cores, ≈ 2.1 for molypermalloy, and 2.3-2.8 for ferrites. " d " is ≈ 1 for powdered iron and ≈ 1.3 for ferrite. A closed form expression can be generated which relates core loss to the basic requirements of a switching regulator; inductance, frequency, and input/output voltages. The general form is

$$
\begin{align*}
& \text { Continuous Mode } P_{C}=\frac{a \bullet b^{p}}{f^{p-d} \cdot L^{p / 2}} \tag{88}\\
& \text { Discontinuous Mode } P_{C}=a \bullet f^{d-1} \bullet e \tag{89}
\end{align*}
$$

```
a, d, p=Core Material Constants (see Table 1)
b, e = Constants Determined by Input and Output
    Voltages and Currents
\(\mathrm{L}=\) Inductance
```

These formulas show that core material, inductance, and frequency are the only degrees of freedom to alter core loss in the continuous mode case. For discontinuous mode, even inductance disappears as a variable, leaving frequency and core material. Further, the constant " d " is close to unity for many core materials, yielding a discontinuous mode core loss independent of all user variables except core materia!!

The following specific formulas will allow calculation of the inductance to achieve a given core loss in continuous mode and will indicate actual core loss for the discontinuous mode.

When using these formulas, assume initially that the term $\mathrm{V}_{\mathrm{e}}{ }^{\mathrm{p}-2 / \mathrm{p}}$ can be ignored. It is close to unity for a relatively wide range of core volumes because the exponent ($\mathrm{p}-2$)/ 2 is less than 0.1 for commonly used powdered iron and molypermalloy cores. After an inductor is chosen and V_{e} is known, the term $V_{e}{ }^{p-2 / p}$ can be calculated to double check its effect on the value for Lmin $^{\text {, usually less than }}$ 20\%.
Continuous Mode
$L_{\text {MIN }}=\frac{a \cdot \mu_{\mathrm{e}} \cdot V_{L}^{2}}{\left(P_{C}\right)^{2 / p_{0}} \cdot \mathrm{f}^{\left(2-\frac{2 d}{p}\right)} \cdot V_{\mathrm{e}}\left(\frac{\mathrm{P}-2}{\mathrm{P}}\right)}$

> Buck Mode Discontinuous
$P_{C}=\frac{a \bullet \mu_{e}(0.4 \pi) f^{d-1}}{10^{-8}}\left(V_{L} \cdot l_{\text {OUT }}\right)$
*A strict derivation
a, d, p=Core loss constants. Use Table 1.
$\mu_{e}=$ Effective core permeability. For ungapped cores, use Table 1. For gapped cores, use manufacturer's specification, or calculate.
$\mathrm{V}_{\mathrm{L}}=\mathrm{An}$ equivalent "voltage," dependent on input voltage, output voltage, and topology. Use Table 2.
$P_{C}=$ Total core loss in watts.
$\mathrm{L}=$ Inductance.
$\mathrm{V}_{\mathrm{e}}=$ Effective core volume in cm^{3}.

Application Note 44

Table 1. Core Constants

		C	a	d	p	μ	Loss at 100 kHz , 500 Gauss (mW/cm3)
Micrometals							
Powdered Iron	\# 8	4.30E-10	8.20E-05	1.13	2.41	35	617
	\#18	$6.40 \mathrm{E}-10$	1.20E-04	1.18	2.27	55	670
	\# 26	7.00E-10	1.30E-04	1.36	2.03	75	1300
	\# 52	$9.10 \mathrm{E}-10$	4.90E-04	1.26	2.11	75	890
Magnetics							
Kool M μ	60	2.50E-11	3.20E-06			60	200
	75	$2.50 \mathrm{E}-11$	3.20E-06	1.5	2	75	200
	90	$2.50 \mathrm{E}-11$	$3.20 \mathrm{E}-06$	1.5	2	90	200
	125	$2.50 \mathrm{E}-11$	3.20E-06	1.5	2	125	200
Molypermalloy	-60	7.00E-12	$2.90 \mathrm{E}-05$	1.41	2.24	60	87
	-125	1.80E-11	1.60E-04	1.33	2.31	125	136
	- 200	3.20E-12	2.80E-05	1.58	2.29	200	390
	-300	$3.70 \mathrm{E}-12$	2.10E-05	1.58	2.26	300	368
	- 550	4.30E-12	$8.50 \mathrm{E}-05$	1.59	2.36	550	890
High Flux	-14	1.10E-10	6.50E-03	1.26	2.52	14	1330
	-26	$5.40 \mathrm{E}-11$	4.90E-03	1.25	2.55	26	740
	-60	$2.60 \mathrm{E}-11$	3.10E-03	1.23	2.56	60	290
	-125	1.10E-11	2.10E-03	1.33	2.59	125	460
	-160	$3.70 \mathrm{E}-12$	6.70E-04	1.41	2.56	160	1280
Ferrite	F	1.80E-14	1.20E-05	1.62	2.57	3000	20
	K	2.20E-18	5.90E-06	2	3.1	1500	5
	P	2.90E-17	4.20E-07	2.06	2.7	2500	11
	R	1.10E-16	4.80E-07	1.98	2.63	2300	11
Philips							
Ferrite	$3 \mathrm{C80}$	6.40E-12	7.30E-05	1.3	2.32	2000	37
	3081	6.80E-14	1.50E-05	1.6	2.5	2700	38
	3 C 85	2.20E-14	8.70E-08	1.8	2.2	2000	18
	3 F 3	1.30E-16	9.80E-08	2	2.5	1800	7
TDK							
Ferrite	PC30	$2.20 \mathrm{E}-14$	1.70E-06	1.7	2.4	2500	21
	PC40	4.50E-14	1.10E-05	1.55	2.5	2300	14
Fair-Rite	77	1.70E-12	1.80E-05	1.5	2.3	1500	86

Table 2. Equivalent Inductor Voltage

TOPOLOGY	V_{L}
Buck Continuous	$V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right) / 2 V_{\text {IN }}$
Buck Discontinuous	
Inverting Continuous	$V_{\text {IN }}{ }^{\prime} \cdot V_{\text {Out }} /$ /[2 $\left.\left(V_{\text {IN }}{ }^{\prime}+V_{\text {Out }}{ }^{\prime}\right)\right]$
Inverting Discontinuous	
Boost Continuous	$\mathrm{V}_{\text {IN }}{ }^{\prime}\left(\mathrm{VOUT}^{\prime}-\mathrm{V}_{\text {IN }}{ }^{\prime} / / 2 \mathrm{~V}_{\text {OUT }}{ }^{\prime}\right.$
Boost Discontinuous	
Tapped-inductor	$\left(V_{\text {IN }}-V_{\text {OUT }}\right)\left(V_{\text {OUT }}\right)(1+N) / 2\left(V_{\text {IN }}+N V_{\text {OUT }}\right)$

Example: Buck converter with $\mathrm{V}_{\text {IN }}=20 \mathrm{~V}-30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, I OUt $=3 \mathrm{~A}, \mathrm{f}=100 \mathrm{kHz}$, maximum inductor loss $=0.8 \mathrm{~W}$.
$3 A$ is more than $I_{M} / 2$, so continuous mode must be used. Maximum input voltage is used to calculate $\mathrm{L}_{\text {Min }}$ from equation 81

$$
L_{\text {MIN }}=\frac{5(30-5)}{2\left(10^{5}\right)(30)(5-3)}=10.4 \mu \mathrm{H}
$$

Now calculate minimum inductance to achieve desired core loss. Assume $1 / 2$ total inductor loss in winding and $1 / 2$ loss in the core ($P_{C}=0.4 \mathrm{~W}$). Try Micrometals \#26 core material. $\mathrm{V}_{\mathrm{L}}($ from Table 2 $)=5(30-5) /(2 \cdot 30)=2.08$

$$
\begin{equation*}
\mathrm{L}_{\text {MIN }}=\frac{\left(1.3 \times 10^{-4}\right)(75)(2.08)^{2}}{(0.4)^{0.985} \cdot\left(10^{5}\right)^{2-1.34}}=52 \mu \mathrm{H} \tag{93}
\end{equation*}
$$

The inductance must be five times the minimum to achieve desired core loss. Let's assume that $52 \mu \mathrm{H}$ is too large for our space requirements and try a better core material, \#52, which is only slightly more expensive.

$$
\begin{equation*}
\mathrm{L}_{\text {MIN }}=\frac{\left(4.9 \times 10^{-4}\right)(75)(2.08)^{2}}{(0.4)^{\frac{2}{2.11}} \cdot\left(10^{5}\right)^{\frac{2-2(1.26)}{2.11}}}=35 \mu \mathrm{H} \tag{94}
\end{equation*}
$$

To see if an off-the-shelf inductor is suitable, calculate inductor currents and $\mathrm{V} \bullet \mathrm{t}$ product using Table 3.

$$
\begin{align*}
& I_{\text {RMS }}=I_{\text {OUT }}=3 \mathrm{~A} \tag{95}\\
& I_{P}=3+\frac{5(30-5)}{2\left(35 \times 10^{-6}\right)\left(10^{5}\right)(30)}=3.6 \mathrm{~A} \\
& V \bullet t=\frac{5(30-5)}{\left(10^{5}\right)(30)}=42 V \cdot \mu \mathrm{~S}
\end{align*}
$$

Table 3. Inductor Operating Conditions

	$\mathrm{I}_{\text {AVG }}$	IPEAK	1p-p	V $\mu \mathrm{\mu s}$
Buck Converter (Continuous)	10	$\mathrm{I}_{0}+\frac{V_{0}\left(V_{1}-V_{0}\right)}{2 \cdot L \cdot f \cdot V_{1}}$	$\frac{V_{0}\left(V_{1}-V_{0}\right)}{L \bullet f \cdot V_{1}}$	$\frac{V_{0}\left(V_{1}-V_{0}\right) \cdot 10^{6}}{f \cdot V_{1}}$
Positive to Negative (Continuous)	$\frac{I_{0}\left(V_{1}+V_{0}\right)}{V_{1}}$	$\frac{I_{0}\left(V_{0}+V_{1}\right)}{V_{1}}+\frac{V_{1} \cdot V_{0}}{2 \cdot L \cdot f\left(V_{1}+V_{0}\right)}$	$\frac{V_{1} \cdot V_{0}}{L \bullet f\left(V_{1}+V_{0}\right)}$	$\frac{V_{1} \cdot V_{0} \cdot 10^{6}}{f\left(V_{1}+V_{0}\right)}$
Negative Boost (Continuous)	$\frac{I_{0} \cdot V_{0}}{V_{1}}$	$\frac{l_{0} \cdot V_{0}}{V_{1}}+\frac{V_{1}\left(V_{0}-V_{1}\right)}{2 L \bullet f \cdot V_{0}}$	$\frac{V_{1}\left(V_{0}-V_{1}\right)}{L \bullet f \bullet V_{0}}$	$\frac{V_{1}\left(V_{0}-V_{1}\right) \cdot 10^{6}}{f \cdot V_{0}}$
TappedInductor*	$\frac{I_{0}\left(N \cdot V_{0}+V_{1}\right)}{V_{1}(1+N)}, \frac{I_{0}\left(N \cdot V_{0}+V_{1}\right)}{V_{1}} *$	$\begin{aligned} & \frac{I_{0}\left(N \cdot V_{0}+V_{1}\right)}{V_{1}(1+N)}+ \\ & \frac{\left(V_{1}-V_{0}\right)(1+N)\left(V_{0}\right)}{2 L \bullet f\left(N \cdot V_{0}+V_{1}\right)} * \end{aligned}$	$\frac{\left(V_{1}-V_{0}\right)(1+N)\left(V_{0}\right)}{L \bullet f\left(N \cdot V_{0}+V_{1}\right)} *$	$\frac{10^{6}\left(V_{1}-V_{0}\right)(1+N)\left(V_{0}\right)}{f\left(N_{0} \cdot V_{0}+V_{1}\right)}$
Buck Converter (Discontinuous)	$1 / 4 \sqrt{\frac{\left(l_{0}\right)^{3} \cdot V_{0}\left(V_{1}-V_{0}\right)}{f \cdot L \cdot V_{1}}}$	$\sqrt{\frac{21_{0} \cdot V_{0}\left(V_{1}-V_{0}\right)}{L \bullet f \cdot V_{1}}}$		$10^{6} \sqrt{\frac{2 \cdot L \cdot l_{0} \cdot V_{0}\left(V_{1}-V_{0}\right)}{f \bullet V_{1}}}$
Positive to Negative (Discontinuous)	$1 / 4 \sqrt{\frac{l_{0}^{3}\left(V_{1}+V_{0}\right)^{2}}{V_{1} \cdot f \cdot L}}$	$\sqrt{\frac{210 \cdot V_{0}}{f \cdot L}}$		$10^{6} \sqrt{\frac{2 l_{0} \cdot V_{0} \cdot L}{f}}$
Negative Boost (Discontinuous)	$1 / 4 \sqrt{\frac{10^{3} \cdot V_{0}^{2}\left(V_{0}+V_{1}\right)}{V_{1}^{2} \cdot L \cdot f}}$	$\sqrt{\frac{2 l_{0}\left(V_{0}-V_{1}\right)}{L \bullet f}}$		$10^{6} \sqrt{\frac{210 \cdot L\left(V_{0}-V_{1}\right)}{L \bullet f}}$

- Values given for tapped-inductor $\mathrm{I}_{\text {AVG }}$ are average current through entire inductor during switch "on" time (first term), and average current through output section during switch "off" time (second term). To calculate heating, these currents must be multiplied by the appropriate winding resistance and factored by duty cycle.

IpEAK is used to ensure the core does not saturate and should be used with the entire inductance.
Peak-to-peak current is used with the entire inductance to calculate core heating losses. It is the equivalent value if the inductor is not tapped.

Application Note 44

This inductor must be at least $35 \mu \mathrm{H}$, rated at 3 A and $\geq 42 \mathrm{~V}$ - $\mu \mathrm{s}$ @ 100 kHz . It must not saturate at a peak current of 3.6 A .
Example: Inverting mode with $\mathrm{V}_{\mathbb{I N}}=4.7-5.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-5 \mathrm{~V}$, $l_{\text {lout }}=1 \mathrm{~A}, \mathrm{f}=100 \mathrm{kHz}$, maximum inductor loss $=0.3 \mathrm{~W}$. Let $\mathrm{V}_{\text {IN }^{\prime}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {out }}{ }^{\prime}=5.5 \mathrm{~V}$. Maximum output current for discontinuous mode (equation 82) is 0.82 A , so use continuous mode.

$$
\begin{align*}
& \mathrm{L}_{\text {MIN }}= \tag{96}\\
& \frac{(2.7)^{2}(5.5)}{2 \times 10^{5}(5.5+2.7)^{2}\left(\frac{5 \cdot 2.7}{5.5+2.7}-1\right)}=4.6 \mu \mathrm{H}
\end{align*}
$$

Now calculate minimum inductance from core loss. Assume core loss is $1 / 2$ of total inductor loss, ($\mathrm{P}_{\mathrm{C}}=0.15 \mathrm{~W}$).

$$
\begin{equation*}
V_{\mathrm{L}}(\text { From Table 2 })=\frac{(2.7)(5.5)}{2(2.7+5.5)}=0.905 \tag{97}
\end{equation*}
$$

Assuming Micrometals type \#26 material,

$$
\begin{equation*}
L_{\text {MIN }}=\frac{\left(1.3 \times 10^{-4}\right)(75)(0.905)^{2}}{(0.15)^{\frac{2}{2.03}} \cdot\left(10^{5}\right)^{2-\frac{2.72}{2.03}}}=26 \mu \mathrm{H} \tag{98}
\end{equation*}
$$

This value is over five times the minimum of $4.6 \mu \mathrm{H}$ Perhaps a higher core loss is acceptable. Here's how to do a quick check. If we assume total efficiency is $\approx 60 \%$ (+ to conversion with a 5 V input is inefficient due to switch loss), then input power is equal to output power divided by $0.6=$ 8.33 W . If we double core loss from 0.15 W to 0.3 W , efficiency will be $5 \mathrm{~W} /(8.33+0.15)=59 \%$. This is only a 1% drop in efficiency. A core loss of 0.3 W allows inductance to drop to $12 \mu \mathrm{H}$, assuming that the $12 \mu \mathrm{H}$ inductor will tolerate the core loss plus winding loss without overheating. Inductor currents are

$$
\begin{equation*}
\operatorname{IRMS}(\text { From Table } 3)=\frac{(1 \mathrm{~A})(2.7+5.5)}{2.7}=3 \mathrm{~A} \tag{99}
\end{equation*}
$$

$$
\begin{aligned}
& \begin{array}{l}
p= \\
\frac{(1 \mathrm{~A})(2.7+5.5)}{2.7}+\frac{(2.7)(5.5)}{2\left(12 \times 10^{-6}\right)\left(10^{5}\right)(2.7+5.5)}=3.8 \mathrm{~A} \\
V \cdot t=\frac{(2.7)(5.5)}{\left(10^{5}\right)(2.7+5.5)}=18 \mathrm{~V} \cdot \mu \mathrm{~s} @ 100 \mathrm{kHz}
\end{array}
\end{aligned}
$$

MICROPOWER SHUTDOWN

The LT1074 will go into a micropower shutdown mode, with $I_{\text {SUPPLY }} \approx 150 \mu \mathrm{~A}$, when the shutdown pin is held below 0.3 V . This can be accomplished with an open collector TTL gate, a CMOS gate, or a discrete NPN or NMOS device, as shown in Figure 19.

Figure 19. Shutdown
The basic requirement is that the pull down device can sink $50 \mu \mathrm{~A}$ of current at a worst case threshold of 0.1 V . This requirement is easily met with any open collector TTL gate (not Schottky clamped), a CMOS gate, or discrete device.
The sink requirements are more stringent if R 1 and R 2 are added for under voltage lockout. Sink capability must be $50 \mu \mathrm{~A}+\mathrm{V}_{\mathrm{IN}} / \mathrm{R} 1$ at the worst case threshold of 0.1 V . The suggested value for R 2 is $5 \mathrm{k} \Omega$ to minimize the effect of shutdown pin bias current. This sets the current through $R 1$ and $R 2$ at $\approx 500 \mu \mathrm{~A}$ at the undervoltage lockout point. At an input voltage of twice the lockout point, R1 current will be slightly over 1 mA , so the pull down device must sink this current down to 0.1V. A VN2222 or equivalent is suggested for these conditions.

Start-Up Time Delay

Adding a capacitor to the shutdown pin will generate a delayed start-up. The internal current averages to about $25 \mu \mathrm{~A}$ during the delay period, so delay time will be $=(2.45 \mathrm{~V}) /(\mathrm{C} \cdot 25 \mu \mathrm{~A}), \pm 50 \%$. If more accurate time out is required, R1 can be added to swamp out the effects of the internal current, but a larger capacitor is needed, and time out is dependent on input voltage.
Some thought must be given to reset of the timing capacitor. If a resistor to ground is used, it must be large enough to not drastically affect timing, so reset time is typically ten times longer than time delay. A diode to V_{IN}

resets quickly, but if $\mathrm{V}_{\text {IN }}$ does not drop to near zero, time delay will be shortened when power is recycled immediately.

5-PIN CURRENT LIMIT

Sometimes it may be desirable to current limit the 5-pin version of the LT1074. This is particularly helpful where maximum load current is significantly less than the 6.5A internal current limit, and the inductor and/or catch diode are minimum size to save space. Short circuit conditions put maximum stress on these components.

The circuit in Figure 20 uses a small toroidal inductor slipped over one lead of the catch diode to sense diode current. Diode current during switch "off" time is almost directly proportional to output current, and L2 can generate an accurate limit signal without affecting regulator efficiency. Total power lost in the limit circuitry is less than 0.1W.
L 2 has 100 turns. It therefore delivers $1 / 100$ times diode current to R_{S} when D1 conducts. The voltage across R_{S} required to current limit the LT1074 is equal to the voltage across R4 plus the forward biased emitter base voltage Q1 $\left(\approx 600 \mathrm{mV} @ 25^{\circ} \mathrm{C}\right)$. The voltage across R4 is set at 1.1 V by R3, which is connected to the output. Current limit is set by selecting R_{S};

$$
\begin{align*}
& R_{S}=\frac{R_{4} \mid X+V_{B E}}{\frac{I_{L I M}}{100}-I_{X}} \tag{100}\\
& I_{x}=\frac{V_{0 U T}+V_{B E}}{R_{3}}+0.4 \mathrm{~mA}
\end{align*}
$$

Application Note 44

overshoot. Linear Technology switching regulators have built-in switch protection that eliminates concern over device failure, but some input supplies may not tolerate the inrush current of a switching regulator. The problem occurs with current limited input supplies or those with relatively high source resistance. These supplies can "latch" in a low voltage state where the current drawn by the switching regulator in much higher than the normal input current. This is shown by the general formula for switching regulator input current and input resistance;

$$
\begin{aligned}
& I_{\text {IN }}=\frac{\left(V_{\text {OUT }}\right)\left(I_{\text {OUT }}\right)}{\left(V_{\text {IIN }}\right)(E)}=\frac{P_{\text {OUT }}}{\left(V_{\text {IN }}\right)(E)} \\
& R_{\text {IN }}=\frac{-\left(V_{\text {II }}\right)^{2}(E)}{\left(V_{\text {OUT }}\right)\left(I_{\text {OUT }}\right)}=\frac{-\left(V_{\text {IN }}\right)^{2}(E)}{P_{\text {OUT }}}(\text { note negative sign }) \\
& E=\text { Efficiency }(\approx 0.7-0.9)
\end{aligned}
$$

These formulas show that input current is proportional to the reciprocal of input voltage, so that if input voltage drops by $3: 1$, input current increases by $3: 1$. An input supply which rises slowly will "see" a much heavier current load during its low voltage state. This can activate current limit in the input supply and "latch" it permanently in a low voltage condition. By instituting a soft start in the switching regulator which is slower than the input supply rise time, regulator input current is held low until the input supply has a chance to reach full voltage.

The formula for regulator input resistance shows that it is negative and decreases as the square of input voltage. The maximum allowed positive source resistance to avoid latch-up is given by;

$$
\begin{equation*}
R_{\text {SOURCE }}(\text { MAX })=\frac{\left(V_{\text {IN }}\right)^{2}(E)}{4\left(V_{\text {OUT }}\right)\left(I_{\text {OUT }}\right)} \tag{103}
\end{equation*}
$$

The formula shows that $\mathrm{a}+12 \mathrm{~V}$ to -12 V converter with 80% efficiency and 1 A load must have a source resistance less than 2.4Ω. This may sound like much ado about nothing, because an input supply designed to deliver 1 A would not normally have such a high source resistance, but a sudden output load surge or a dip in the source voltage might trigger a permanent overload condition Low $\mathrm{V}_{\text {IN }}$ and highoutputload require lower source resistance.

Figure 21. Soft Start Using lum Pin
In Figure 21, C2 generates a soft start of switching current by forcing the I LIM pin to ramp up slowly. Current out of the LIIM pin is $^{2}=300 \mu \mathrm{~A}$, so the time for the LT1074 to reach full switch current $\left(\mathrm{V}_{\text {LIM }} \approx 5 \mathrm{~V}\right)$ is $\approx\left(1.6 \times 10^{4}\right)(\mathrm{C})$. To ensure low switch current until $V_{\text {IN }}$ has reached full value, an approximate value for C 2 is

$$
\begin{equation*}
C 2 \approx\left(10^{-4}\right)(T) \tag{104}
\end{equation*}
$$

$T=$ Time for input voltage to rise to within 10% of final value.

C2 must be reset to zero volts whenever the input voltage goes low. An internal reset is provided when the shutdown pin is used to generate undervoltage lockout. The "undervoltage" state resets C2. If lockout is not used, R3 should be added to reset C2. For full current limit, R3 should be $30 \mathrm{k} \Omega$. If reduced current limit is desired, R3's value is set by desired current limit. See the "Current Limit" section.

If the only reason for adding soft start is to prevent input supply latchup, a better alternative may be undervoltage lockout (UVLO). This prevents the regulator from drawing input current until the input voltage reaches a preset voltage. The advantage of UVLO is that it is a true DC function and cannot be defeated by a slow rising input, short reset times, momentary output shorts, etc.

OUTPUT FILTERS

When converter output ripple voltage must be less than $\approx 2 \%$ of output voltage, it is usually better to add an output filter (Figure 22) than to simply "brute force" the ripple by using very large output capacitors. The output filter consists of a small inductor $(\approx 2 \mu \mathrm{H}-10 \mu \mathrm{H})$ and a second
output capacitor, usually $50 \mu \mathrm{~F}-200 \mu \mathrm{~F}$. The inductor must be rated at full load current. Its core material is not important (core loss is negligible) except that core material will determine the size and shape of the inductor. Series resistance should be low enough to avoid unwanted efficiency loss. This can be estimated from;

$$
\begin{equation*}
R_{L}=\frac{(\Delta E)\left(V_{\text {OUT }}\right)}{(\text { louT })(E)^{2}} \tag{105}
\end{equation*}
$$

Figure 22. Output Filter
" E " is overall efficiency and ΔE is the loss in efficiency allocated to the filter. Both are expressed as a ratio, i.e., 2% $\Delta \mathrm{E}=0.02$, and $80 \% \mathrm{E}=0.8$.

To obtain the required component values for the filter, one must assume a value for inductance or capacitor ESR, then calculate the remaining value. Actual capacitance in microfarads is of secondary importance because it is assumed that the capacitor will be basically resistive at ripple frequencies. One consideration on filter capacitor value is the load transient response of the converter. A small output filter capacitor (high ESR) will allow the output to "bounce" excessively if large amplitude load transients occur. When these load transients are expected, the size of the output filter capacitor must be increased to meet transient requirements rather than just ripple limits. In this situation, the main output capacitor can be reduced to simply meet ripple current requirements. The complete design should be checked for transient response with full expected load change.

If the capacitor is selected first, the inductor value can be found from ripple attenuation requirements.
Buck converter with triangular ripple into filter

$$
\begin{equation*}
L_{f}=\frac{(E S R)(\text { ATTN })}{8 f} \tag{106}
\end{equation*}
$$

All other converters with essentially rectangular ripple into filter

$$
\begin{equation*}
L_{f}=\frac{(E S R)(A T T N)(D C)(1-D C)}{f} \tag{107}
\end{equation*}
$$

ESR = Filter capacitor series resistance.
ATTN = Ripple attenuation required, as a ratio of peak-topeak ripple IN to peak-to-peak ripple OUT.
$D C=$ Duty cycle of converter. (If unknown, use worst case of 0.5).

Example: A 100 kHz buck converter with 150 mVp -p ripple which must be reduced to 20 mV . ATTN $=150 / 20=7.5$. Assume a filter capacitor with $\mathrm{ESR}=0.3 \Omega$

$$
\begin{equation*}
\mathrm{L}=\frac{(0.3)(7.5)}{8\left(10^{5}\right)}=2.8 \mu \mathrm{H} \tag{108}
\end{equation*}
$$

Example: A 100 kHz positive to negative converter with output ripple of $250 \mathrm{mVp}-\mathrm{p}$ which must be reduced to 30 mV . Assume duty cycle has been calculated at $30 \%=$ 0.3 , and ESR of filter capacitor is 0.2Ω

$$
\begin{equation*}
L=\frac{(0.2)(250 / 30)(0.3)(1-0.3)}{10^{5}}=3.5 \mu \mathrm{H} \tag{109}
\end{equation*}
$$

If the inductor is known, the equations can be rearranged to solve for capacitor ESR.

$$
\begin{align*}
& \text { Buck Converter; } \tag{110}\\
& \text { ESR }=\frac{8 f(\mathrm{~L})}{\text { ATTN }} \\
& \text { Square WaveRippleln; } \\
& \mathrm{ESR}=\frac{\mathrm{f} \bullet \mathrm{~L}}{(\text { ATTN })(\mathrm{DC})(1-\mathrm{DC})}
\end{align*}
$$

The output filter will affect load regulation if it is "outside" the regulator feedback loop. Series resistance of the filter inductor will add directly to the closed loop output resistance of the converter. This closed loop resistance is typically in the range of $0.002 \Omega-0.01 \Omega$, so a filter inductor resistance of 0.02Ω may represent a significant loss in load regulation. One solution is to move the filter "inside" the feedbackloop by moving the sense points to the output of the filter. This should be avoided if possible because the added phase shift of the filter can cause difficulties in

Application Note 44

stabilizing the converter. Buck converters will tolerate an output filter inside the feedback loop by simply reducing the loop unity gain frequency. Positive to negative converters and boost converters have a "right half plane zero" which makes them very sensitive to additional phase shift. To avoid stability problems, one should first determine if the load regulation degradation caused by a filter is really a problem. Most digital and analog "chips" in use today tolerate modest changes in supply voltage with little or no effect on performance.

When the sense resistor is tied to the output of the filter, a "fix" for stability problems is to connect a capacitor from the input of the filter to a tap on the feedback divider as shown in Figure 23. This acts as a "feedforward" path around the filter. The minimum size of C_{x} will be determined by the filter response, but should be in the range of $0.1 \mu \mathrm{~F}-1 \mu \mathrm{~F}$.

Cx could theoretically be connected directly to the FB pin, but this should be done only if the peak-to-peak ripple on the main output capacitor is less than 75 mVp -p.
A word about "measured" filter output ripple. The true ripple voltage should contain only the fundamental of the switching frequency because higher harmonics and "spikes" are very heavily attenuated. If the ripple as measured on an oscilloscope is abnormally high or contains high frequencies, the measurement technique is probably at fault. See the "Oscilloscope Techniques" section.

Figure 23. Feedforward when Output Filter is Inside Feedback Loop

INPUT FILTERS

Most switching regulators draw power from the input supply with rectangular or triangular current pulses. (The exception is a boost converter where the inductor acts as a filter for input current). These current pulses are absorbed primarily by the input bypass capacitor which is located right at the regulator input. Significant ripple current can still flow in the input lines, however, if the impedance of the source, including the inductance of supply lines, is low. This ripple current may cause unwanted ripple voltage on the input supply or may cause EMI in the form of magnetic radiation from supply lines. In these cases, an input filter may be required. The filter consists of an inductor in series with the input supply combined with the input capacitor of the converter, as shown in Figure 24.

Figure 24. Input Filter
To calculate a value for L requires knowledge of what ripple current is allowed in the supply line. This is normally an unknown parameter, so much hand waving may go on in search of a value. Assuming that a value has been arrived at, L is found from;

$$
\begin{equation*}
L=\frac{E S R(D C)(1-D C)}{f\left(\frac{I_{\text {SUP }}}{I_{\text {CON }}}-\frac{E S R}{R f}\right)} \tag{111}
\end{equation*}
$$

ESR = Effective series resistance of input capacitor.
DC $=$ Converter duty cycle. If unknown, use 0.5 as worst case.
$I_{\text {CON }}=$ Peak-to-peak ripple current drawn by the converter, assuming continuous mode. For buck converters, $I_{\text {CON }} \approx I_{\text {Out }}$. Positive to negative converters have $I_{\text {CON }}=I_{\text {OUT }}\left(V_{\text {OUT }}{ }^{\prime}+V_{\text {IN }}{ }^{\prime}\right) N_{\text {IN }}$ '. Tapped-inductor $I_{\text {CON }}=I_{\text {OUT }}\left(N \cdot V_{\text {OUT }}{ }^{\prime}+V_{\text {IN }}{ }^{\prime}\right) /\left[V_{\text {IN }}{ }^{\prime}(1+N)\right]$.
$I_{\text {SUP }}=$ Peak-to-peak ripple allowed in supply lines.
$R_{f}=$ "Damping" resistor which may be required to prevent instabilities in the converter.

Application Note 44

Example: A 100 kHz buck converter with $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=4 \mathrm{~A}, \mathrm{~V}_{I N}=20 \mathrm{~V}$, ($D C=0.25$). Input capacitor ESR is 0.05Ω. It is desired to reduce supply line ripple current to $100 \mathrm{~mA}(p-p)$. Assume R_{f} is not needed $(=\infty)$.

$$
\begin{equation*}
\mathrm{L}=\frac{(0.05)(0.25)(1-0.25)}{10^{5}\left(\frac{0.1}{4}-0\right)}=3.75 \mu \mathrm{H} \tag{112}
\end{equation*}
$$

For further details on input filters, including the possible need for a damping resistor $\left(\mathrm{R}_{\mathrm{f}}\right)$, see the "Input Filters" section in Application Note 19.

The current rating of the input inductor must be a minimum of;

$$
\begin{equation*}
I_{L}=\frac{\left(V_{\text {OUT }}\right)\left(I_{\text {OUT }}\right)}{\left(V_{\text {IN }}\right)(E)} A m p s \tag{113}
\end{equation*}
$$

(Use Minimum V_{IN})
For this example;

$$
I_{L}=\frac{(5)(4)}{(20)(E \approx 0.8)}=1.25 \mathrm{~A}
$$

Efficiency or overload considerations may dictate an inductor with higher current rating to minimize copper losses. Core losses will usually be negligible.

OSCILLOSCOPE TECHNIQUES

Switching regulators are a perfect test bed for poor oscilloscope techniques. A "scope" can lie in many ways and they all show up in a switching regulator because of the combination of fast and slow signals, coupled with both large and very small amplitudes. The following Rogue's Gallery will hopefully help the reader avoid many hours of frustration (and eliminate some embarrassing phone calls to the author).

Ground Loops

Good safety practice requires most instruments to have their "ground" system tied to a "third" (green) wire in the power cord. This unfortunately results in current flow through oscilloscope probe ground leads (shield) when other instruments source or sink current to the device under test. Figure 25 details this effect.
A generator is driving a 5 V signal into 50Ω on the breadboard, resulting in a 100 mA current. The return path for this current divides between the ground from the signal generator (typically the shield on a BNC cable) and the secondary ground "loop" created by the oscilloscope probe ground clip (shield), and the two "third wire" connections on the signal generator and oscilloscope. In

Figure 25. Ground Loop Errors

Application Note 44

this case, it was assumed that 20 mA flows in the parasitic ground loop. If the oscilloscope ground lead has a resistance of 0.2Ω, the screen will show a 4 mV "bogus" signal. The problem gets much worse for higher currents, and fast signal edges where the inductance of the scope probe shield is important.
DC ground loops can be eliminated by disconnecting the third wire on the oscilloscope (its called a cheater plug, and my lawyers will not let me recommend it!) or by the use of an isolation transformer in the oscilloscope power connection.
Another source of circulating current in the probe shield wire is a second connection between a signal source and the scope. A typical example is a trigger signal connection between the generator trigger output and the scope external trigger input. This is most often a BNC cable with its own grounded shield connection. This forms a second path for signal ground return current, with the scope probe shield completing the path. My solution is to use a BNC cable which has had its shield intentionally broken. The trigger signal may be less than perfect, but the scope will not care. Mark the cable to prevent normal use!
Rule \#1: Before making any low level measurements, touch the scope probe "tip" to the probe ground clip with the clip connected to the desired breadboard ground. The "scope" should indicate flatline. Any signal displayed is a ground loop lie.

Miscompensated Scope Probe

10X scope probes must be "compensated" to adjust AC attenuation so it precisely matches the 10:1 DC attenuation of the probe. If this is not done correctly, low frequency signals will be distorted and high frequency signals will have the wrong amplitude. In switching regulator applications, a "miscompensated" probe may show "impossible" waveforms. A typical example is the switching node of an LT1074 buck converter. This node swings positive to a level $1.5 \mathrm{~V}-2 \mathrm{~V}$ below the input voltage, and negative to one diode drop below ground. A 10X probe with too little AC attenuation could show the node swinging above the supply, and so far negative that the diode forward voltage appears to be many volts instead of the expected 0.5 V . Remember that at these frequencies $(100 \mathrm{kHz})$, the wave shape looks right because the probe
acts purely capacitive, so the wrong amplitude may not be immediately obvious.

Rule \#2: Check 10X scope probe compensation before being embarrassed by a savvy tech.

Ground "Clip" Pickup

Oscilloscope probes are most often used with a short ground "lead" with an alligator clip on the end. This ground wire is a remarkably good antenna. It picks up local magnetic fields and displays them in full color on the oscilloscope screen. Switching regulators generate lots of magnetic fields. Switch wires, diodes, capacitor and inductor leads, even "DC" supply lines can radiate significant magnetic fields because of the high currents and fast rise/fall times encountered. The test for ground clip problems is to touch the probe tip to the alligator clip, with the clip connected to the regulator ground point. Any trace seen on the screen is caused either by circulating currents in a ground loop, or by antenna action of the ground clip.

The fix for ground clip "pickup" is to throw the clip wire away and replace it with a special soldered-in probe terminator which can be obtained from the probe manufacturer. The plastic probe tip cover is pulled off to reveal the naked coaxial metal tube shield which extends to the small needle tip. This tube slips into the terminator to complete the ground connection. This technique will allow you to measure millivolts of output ripple on a switching regulator even in the presence of high magnetic fields.

Rule \#3: Don't make any low level measurements on a switching regulator using a standard ground clip lead. If an official terminator is not available, solder a solid bare hookup wire to the desired ground point and wrap it around the exposed probe coaxial tube with absolute minimum distance between the ground point and the tube. Position the ground point so that the probe needle tip can touch the desired test point.

Wires Are Not Shorts

A common error in probing switching regulators is to assume that the voltage anywhere on a wire path is the same. A typical example is the ripple voltage measured at the output of a switching regulator. If the regulator delivers square waves of current to the output capacitor, a positive
to negative converter for instance, the current rise/ fall time will be approximately $10^{8} \mathrm{~A} / \mathrm{sec}$. This $\mathrm{dl} / \mathrm{dt}$ will generate $\approx 2 \mathrm{~V}$ per inch "spikes" in the lead inductance of the output capacitor. The output (load) traces of the regulator should connect directly to the through-hole points where the radial-lead output capacitor leads are soldered in. The oscilloscope probe tip terminator (no ground clips, please) must be tied in directly at the base of the capacitor also.

The $2 \mathrm{~V} / \mathrm{in}$. number can cause significant measurement errors even at high level points. When the input voltage to a switching regulator is measured across the input bypass capacitor, the spikes seen may be only a few tenths of a volt. If that capacitor is several inches away from the LT1074 though, the spikes "seen" by the regulator may be many volts. This can cause problems, especially at a low input voltage. Probing the "wrong" point on the input wire might mask these spikes.

Rule \#4: If you want to know what the voltage is on a high AC current signal path, define exactly which component voltage you are measuring and connect the probe terminator directly across that component. As an example, if your circuit has a snubber to protect against switch overvoltage, connect the probe terminator directly to the IC switch terminals. Inductance in the leads connecting the switch to the snubber may cause the switch voltage to be many volts higher than the snubber voltage.

EMI SUPPRESSION

Electromagnetic interference (EMI) is a fact of life with switching regulators. Consideration of its effects should occur early in the design so that the electrical, physical, and monetary implications of any required filtering or shielding are understood and accounted for. EMI takes two basic forms; "conducted," which travels down input and output wiring, and "radiated," which takes the form of electric and magnetic fields.

Conducted EMI occurs on input lines because switching regulators draw current from their input supply in pulses, either square wave, or triangular, or a combination of these. This pulsating current can create bothersome ripple voltage on the input supply and it can radiate from input lines to surrounding lines or circuitry.

Conducted EMI on the output of a switching regulator is usually limited to the voltage ripple on the output nodes. Ripple frequencies from buck regulators consist almost entirely of the fundamental switching frequency, whereas boost and inverting regulator outputs contain much higher frequency harmonics if no additional filtering is used.
Electric fields are generated by the fast rise and fall times of the switch node in the regulator. EMI from this source is usually of secondary concern and can be minimized by keeping all connections to this node as short as possible and by keeping this node "internal" to the switching regulator circuitry so that surrounding components act as shields.

The primary source of electric field problems within the regulator itself is coupling between the switching node and the feedback pin. The switching node has a typical slew rate of $0.8 \times 10^{9} \mathrm{~V} / \mathrm{sec}$., and the impedance at the feedback pin is typically $1.2 \mathrm{k} \Omega$. Just 1PF coupling between these pins will generate 1 V spikes at the feedback pin, creating erratic switching waveforms. Avoid long traces on the feedback pin by locating the feedback resistors immediately adjacent to the pin. When coupling to switching node cannot be avoided, a 1000 pF capacitor from the LT1074 ground pin to the feedback pin will prevent most pickup problems.
Magnetic fields are more troublesome because they are generated by a variety of components, including the input and output capacitors, catch diode, snubber networks, the inductor, the LT1074 itself, and many of the wires connecting these components. While these fields do not usually cause regulator problems, they can create problems for surrounding circuitry, especially with low level signals such as disc drives, data acquisition, communication, or video processing. The following guidelines will be helpful in minimizing magnetic field problems.

1. Use inductors or transformers with good EMI characteristics such as toroids or pot cores. The worst offenders from an EMI standpoint are "rod" inductors. Think of them as cannon barrels firing magnetic flux lines in every direction. Their only application in switchers should be in the output filter where ripple current is very low.
2. Route all traces carrying high ripple current over a ground plane to minimize radiated fields. This includes the catch diode leads, input and output capacitor leads, snubber leads, inductor leads, LT1074 input and switch pin leads, and input power leads. Keep these leads short and the components close to the ground plane.
3. Keep sensitive low level circuitry as far away as possible, and use field-cancelling tricks such as twisted-pair differential lines.
4. In critical applications, add a "spike killer" bead on the catch diode to suppress high harmonics. These beads will prevent very high d / dt signals, but will also make the diode appear to turn "on" slowly. This can create higher transient switch voltages at switch turn-off, so switch waveforms should be checked carefully.
5. Add an input filter if radiation from input lines could be a problem. Just a few $\mu \mathrm{H}$ in the input line will allow the regulator input capacitor to swallow nearly all the ripple current created at the regulator input.

TROUBLESHOOTING HINTS

Low Efficiency

The major contributors here are switch and diode loss. These are readily calculable. If efficiency is abnormally low after factoring in these effects, zero in on the inductor. Core or copper loss may be the problem. Remember that inductor current may be much higher than output current in some topologies. A very handy substitution tool is a $500 \mu \mathrm{H}$ inductor wound with heavy wire on a large molypermalloy core. $100 \mu \mathrm{H}$ and $200 \mu \mathrm{H}$ taps are helpful. This inductor can be substituted for suspect units when inductor losses are suspected. If you read this App Note, you will know that a large core is used not to reduce core loss, but to allow enough room for large wire that eliminates copper loss.
If inductor losses are not the problem, check all the nickel and dime effects such as quiescent current and capacitor loss to see if the sum is no longer negligible.

Alternating Switch Timing

Switch "on" time may alternate from cycle to cycle if excess switching frequency ripple appears on the V_{c} pin. This can occur naturally because of high ESR in the output capacitor or because of pickup on the FB pin or the V_{C} pin. A simple check is to put a 3000 pF capacitor from V_{C} pin to the ground pin close to the IC. If the erratic switching improves or is cured, excess V_{C} pin ripple is the problem. Isolate it by connecting the capacitor from FB to ground pin. If this also makes the problem disappear, V_{C} pin pickup is eliminated, and FB pickup is the likely culprit. The feedback resistors should be located close to the IC so that connections to the FB pin are short and routed away from switching nodes. A 500 pF capacitor from FB to ground pin will usually be sufficient if pickup cannot be eliminated. Occasionally, excess output ripple is the problem. This can be checked by paralleling the output capacitor with a second unit. A $1000 \mathrm{pF}-3000 \mathrm{pF}$ capacitor on V_{C} can often be used to stop erratic switching caused by high output ripple, but be sure the ripple current rating of the output capacitor is adequate!

Input Supply Won't Come Up

Switching regulators have negative input resistance at $D C$. Therefore, they draw high current at low $\mathrm{V}_{\mathbb{I N}}$. This can latch input supplies low. See "Soft Start" section for details.

Switching Frequency is Low in Current Limit

This is normal. See "Frequency Shifting at the Feedback Pin" in the Pin Description section.

IC Blows Up!

Like the LT1070 before it, the only thing that can destroy the LT1074 or LT1076 is excess switch voltage. (I am ignoring obvious stuff like voltage reversal or wiring errors).
Start-up surges can sometimes cause momentary large switch voltages, so check voltages carefully with an oscilloscope. Read the section on oscilloscope techniques.

IC Runs Hot

A common mistake is to assume that heat sinks are no longer needed with a switching design. This is often true for small load currents, but as load current climbs above 1A, switch loss may increase to the point where a heat sink is needed. A TO-220 package has a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$ with no heat sink. A5V, 3A output (15 W) with 10% switch loss, will dissipate over 1.5 W in the IC. This means a $75^{\circ} \mathrm{C}$ temperature rise, or $100^{\circ} \mathrm{C}$ case temperature at room ambient. This is normally referred to as hot! A small heat sink solves the problem. Simply soldering the TO-220 tab to an enlarged copper pad on the PC board will reduce thermal resistance to $\approx 25^{\circ} \mathrm{C} / \mathrm{W}$.

High Output Ripple or Noise Spikes

First read "Oscilloscope Techniques" section to avoid possible embarrassment, then check ESR of the output capacitor. Remember that fast (<100ns) spikes will be greatly attenuated by parasitic supply line inductance and load capacitance even if supply lines are only a few inches long.

Poor Load or Line Regulation

Check in this order:

1. Secondary output filter DC resistance if it is outside the loop.
2. Ground loop error in oscilloscope.
3. Improper connection of output divider resistors to current carrying lines.
4. Excess output ripple. The LT1074 can peak detect ripple voltages on the FB pin if they exceed 50 mVp -p.

See "Reference Shift with Ripple Voltage" graph in Typical Performance Characteristics section.
$500 \mathrm{kHz}-5 \mathrm{MHz}$ Oscillations, Especially at Light Load
This is discontinuous mode ringing and is quite normal and harmless. See buck converter waveform description for more details.

