designideas

Power supply meets automotive-transient-voltage specs

Francesc Casanellas, Aiguafreda, Spain

Figure 1 shows a power supply that delivers 5V from a 12V battery. With only a few components, the supply copes with all the automotive transients that ISO (International Organization for Standardization) 7637-1 lists without the need for a bulky transient-voltage suppressor. In normal operation, R₃ connects to the common through a microcontroller port. In standby mode, R₃ stays open,

and the quiescent current of the supply decreases from approximately 2.8 mA to approximately 160 μ A, and the output voltage then drops to approximately 3.5V. If your application doesn't require a standby mode, suppress R_3 and set R_5 to 220 Ω . With most common zener diodes, you would then set R_5 to 120 Ω and D_1 to 4.3V. You can use the circuit in 24V systems if D_7 is 36V.

If the voltage increases, the current

Figure 1 This automotive regulator withstands overvoltages that ISO 7637-1 specifies.

through D_1 and the base of Q_3 increases, so Q_3 increases the current of Q_2 , which lowers the gate-to-source voltage of Q_1 . If the input voltage surpasses 19V, D_2 starts to conduct and makes Q_2 switch off Q_1 , so permanent overvoltages as high as 200V cannot damage the circuit. The Miller capacitance of Q_1 makes it act as a fast integrator, which keeps the system stable. If you remove D_2 , you must replace Q_3 with a high-voltage transistor, such as an MMBTA42.

If you omit D_2 , the circuit cannot withstand permanent overvoltages without Q_1 's overheating. In this case, however, the circuit can cope with all the impulses, including the load-dump pulse, of ISO 7637-1. You should remove D_2 only if C_1 cannot maintain the voltage during long overvoltages, such as the load-dump pulse, and keeping the voltage is critical.

An added advantage of this circuit over most IC-voltage regulators is that it can sink current through D₁ and Q₃. This feature allows the use of diodes to fully protect the microprocessor's inputs. Soldering the D-Pack package to a couple of 1-cm² copper pads allows the circuit to source 300 mA at 10 to 16V or 150 mA at 20 to 32V. More dissipation area allows for higher currents. Edn