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LAST TIME WE PRESENTED GENERAL 

concepts of electric fields and 
how they are related to static elec
tric charges. We saw that the E 
field in empty space accounts for 
the forces between such charges. 
In this article, we'll see how the 
familiar units of volts and am
peres are related to each other. 
Ohm's law and the concept of an 
E field in materials will be dis
cussed with the help of a simple 
quantum theory viewpoint. 

Potential 
To quasi-statically move a 

charge q from point a to point b 
in an E field, a force that is infi
nitely close to being equal and op
posite to the Coulomb force must 
be applied to q . That force is 
- qE = - F c• as shown in Fig. 1. 
As we discussed in our previous 
article, when moving around a 
closed path 

fE·di = O, 
or 

'i? x E = O 
at all points. So in moving the 
charge around a closed path 

- fqE·di = O. 
The dot product gives the magni
tude of force times distance in 

the direction moved, which is the 
work done or change in the po
tential energy 11U. The energy ex
pended in moving along the path 
from a to b is just the sum of the 
contributions along that path, as 
defined in the calculus notation 

L'>Uab =-J.~ E · d I (newton x meters= joules). 

The energy change is indepen
dent of the path taken from point 
a to b. and the E field follows the 
laws of conservation; whatever 
energy is expended in moving the 
charge from point a to b is re
covered when the charge moves 
from b to a. The energy is said to 
be stored in the E field since the 
field is responsible for the force. 

Dividing by the charge gives us 
the change in energy per unit 
charge, the potential or voltage at 
point b with respect to a is 

V - I'>Uab -
ab- q -

-J: E · d I (joules I coulomb= volts). 

The use of the name potential is 
perhaps unfortunate because it's 
easy to confuse the term with po
tential energy. 

Recall also that since V x E = 0 , 
E must be the gradient of a scaler 

field, which we now see is the po
tential V, therefore 
E = - 'i?V (volts/meter = newtons/coulomb). 

Along a surface of equal poten
tial, there would be no change in 
V per length dl. Perpendicular to 
that surface the change in V per 
length would be a maximum, 
which is what the gradient tells 
us. 

Since the field is obtainable by 
linear superposition, the poten
tial difference is simply the sum 
of the potentials . For example, 
V ac = V ab + V b e · That analysis is 
the basis ofKirchoffs voltage law, 
which states that the algebraic 
sum of the voltage ris es and 
drops around a closed path must 
equal zero. 

Electric current 
Imagine a Gaussian surface in 

space through which a number 
of q charges are moving, as 
shown in Fig. 2. (We are not con
cerned with the type of field influ
encing the motion, only that ~ 
there is motion.) The current ~ 
across that surface is defined as ~ 
the charge per unit time (in sec- ~ 
onds) crossing the surface. In :IJ 

order to calculate that, divide the c.o 

surface into an infinite number c.o 
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of infinitesimal surfaces, ds. The 
charges move with velocity v 
through each surface. If there are 
n charges per unit volume, then 
the cu~rent.density, or charge per 
unit area is 

J = nqv = pv (Cfm2s). 
Multiplying that by the effective 
area aljld summing the contribu
tions by integration gives the 
total current 

I = JJ·ds (C/s = amperes). 
Positive charges flowing in one 

direction can be consider ed 
equivalent to negative charges 
flowing in the opposite direction 
(the Hall effect is a common ex
ception) since both J and ds 
would then be negative. That is 
why a circuit can be analyzed in 
terms of either conventional cur
rents or electron currents. 

The way current is defined is 
similar to the way we explained 
electric flux w except that flux is 
an apparent flow while current is 
due to an actual flow of charge. 
Charge conservation tells us that 
whatever charge flows into the 
surface must also flow out unless 
the c~rrent density inside is 
changing in time. That is the 
basis of Kirchhoffs current law, 
which tells us that the sum of the 
currents flowing into a junction 
is equal to the sum of the cur
rents flowing out of that junc
tion. Shrinking the Gaussian 
surface down to a single point 
and taking the ratio of the rate of 
change in current to the rate of 
change in volume gives the diver
gence 

V· J =- Jp (C i m3s). 
J t 

The partial differential symbol 
a. as in d, means an infinitesimal 
change in something. It also re
minds us that we're only inter
ested in p's change with respect 
to time, t . The negative sign indi
cates that a decrease in p, a n ega
tive ap/at, gives a positive 
divergence. The net charge must 
therefore flow out through the 
surface. 

Conductivity 
(/) Up until this point we have 
~ been concerned only with 
~ charges in empty space. The 
g: space of solid materials, however, 
~ is far from empty. Atoms are !o
Ld cated at positions called lattice 
6 points. An external E field ap
~ plied to a solid material causes 
a: the electrons with a - e charge to 
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FIG. 1-AN ELECTRIC CHARGE q is 
moved quasi-statically from point a tobin 
a static E field along either path, com
posed of an infinite number of lengths dl, 
by an external force qE (not shown). The 
work done or change in energy is the 
negative of the sum of all the qE ·dl's along 
the path. 

FIG. 2-CURRENT DENSITY J is the 
number of charges q per unit volume mov
ing with velocity v through an infi
nitesimal section ds of the Gaussian 
surface. The total current is found by sum
ming J ·ds over the entire surface. Any 
charge that comes in through one ds must 
leave through another. Any net outflow 
must be at the expense of the charge den
sity enclosed by the surface. 
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FIG. 3-ENERGY VERSUS MOMENTUM 
for electrons in a material. Temperature 
and lattice effects are neglected. Each 
electron, represented by a dot on the 
curve, has a unique energy state. Those 
are the lowest states available. The high
est occupied energy is called the Ferll)i 
energy. 

move. Quantum theory must be 
used to describe the effects of 
temperature and the lattice upon 

the motion of charges. 
The electrons are in a state de

scribed by their energy, mo
m entum, and spin. No two 
electrons can be in the same 
state. Electrons can change ener
gy only by moving to a neighbor
ing unoccupied energy state. 
Figure 3 shows the energy versus 
momentum states, neglecting 
the effects of temperature and 
the lattice. The two possible spin 
states for each electron are not 
shown for clarity. 

The more electrons there are in 
the material, the higher the high
est occupied energy state, or Fer
mi level. Only electrons near the 
Fermi level can respond to exter
nal effects such as thermal ener
gy and electric fields. Supplying 
thermal energy excites some elec
trons to energies just above the 
Fermi level, leaving unoccupied 
states just below. The Fermi level 
is then taken as the energy with 
50% occupancy. Electrons that 
can change energy, and hence 
momentum, are called con
duction electrons. Thermally ex
cited electrons have random 
momentum and velocity, and do 
not produce a net current. 

Electrons act as waves and, 
therefore, experience inter
ference effects due to interaction 
with the lattice. At certain wave
lengths, standing waves result 
which produce energy gaps, as 
shown in Fig. 4. If only some of 
the energy states up to the gap 
are occupied or the gap is very 
small, the material will have 
many conduction electrons since 
little external energy is required 
to excite an electron to a higher 
state. Such materials are good 
electrical conductors. A good in
sulator (or dielectric) has oc
cupied states up to a relatively 
large gap. A large amount of ex
ternal energy is required to excite 
electrons to higher energies in a 
dielectric material. A material 
with a large gap and many oc
cupied lower states exhibits no
ticeable electrical resistance. 

If a potential difference is 
maintained across a material, an 
electric field is established. Con
duction electrons will be sub
jected to a force F , which is equ al 
to - eE . Electrons tend to acceler
ate, and then "collide" and lose 
energy to the lattice. If T is the 
average time between collisions, 
which is temperature dependent 
due to thermal motion of the !at-
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FIG. 4-ENERGV VERSUS MOMENTUM for electrons is a lattice of atoms. The gaps in the 
curves result from interference effects with the electron waves. In a conductor (a) the 
levels below the gap are partially occupied. External energy excites .electrons to the 
unoccupied energy states. That allows them to participate in an electric current. In an 
insulator (b) the levels below the gap are filled and the energy gaps are large. Electrons 
cannot participate in a current unless a large amount of external energy is supplied. 

tice atoms, then the average elec
tron momentum is 

F-r = - eET = m+v (N·s = kg·m/s) 
where m is the electron mass, 
and vis the average velocity. Solv
ing for the velocity and substitut
ing into the equation for current 
density gives us 

2 
J = ne r E 

m 

which is the vector form of Ohm's 
law. Since the number of elec
trons n and T are properties of the 
material, the conductivity 

(J = ne2-r/m (C2s/kg = 1/(fl·m) 
is a property of the material. The 
resistivity is defined as r= 1/a. If 
the material is of uniform cross
sectional areaS and oflength L, J 
is uniform and normal to ds, 
therefore the current is 

I= JS = <Yy_ S 
L 

or V = IR where R = rLIS is resis
tance in more familiar units of 
ohms. 

In metals, increasing the ther
mal energy excites electrons 
mainly into the unoccupied 
states of the lower band, but the 
time between lattice collisions 
decreases. Increasing the tem
perature increases the resis
tance. In some other materials 
resistance decreases with in
creasing temperature because 
the number of conduction elec
trons exceeds the effect of in
creased collision time. 

Due to the low velocity of elec
trons in most solids, the magnet
ic effects can be neglected. 
Conduction becomes more com
plicated in gases and liquids 
since the atoms can also move, 
and velocities can become greater 
than in solids. 

The electric field in materials 
When a material is placed in an 

external electric field E0 , the wave 
functions of the atoms are 
changed. The net effect is that 

FIG. 5-MATERIALS IN AN EXTERNAL ELECTRIC FIELD E0 exhibit electric polarization. 
The resulting separation of positive and negative charge regions produce electric dipole 
moments qR, where q is taken as positive. In a conductor (a), enough electrons are free to 
move to create a depolarization field Ed equal and opposite to E0 • The internal electric 
field E1 = E0 - Ed is zero. In an insulator or dielectric (b), electrons are restricted in 
movement and E1 is non zero. In both cases, the polarizatioo or dipole moment per unit 
volume P is related to - Ed. The vectors are shown outside the material for clarity. 

the regions with probability of 
finding electrons are shifted in 
the - E0 direction while the re
gions with probability of finding 
the positively charged nuclei are 
shifted in the direction of + E0 

(Fig. 5 ). The shifts may not exact
ly align parallel to E0 , and may 
not all be uniform except in what 
we call simple materials. A nega
tive surface charge develops on 
the material near the source of 
E0 , and a positive surface charge 
develops on the opposite side. We 
say the material has an induced 
charge, or that it is electrically 
polarized. 

The induced charges produce a 
field Ed in the opposite direct ion 
to E 0 in the material. In a very 
good conductor, there are 
enough free charges so that Ed 
equals E0 , and the average field 
inside is zero. That is why metal 
is an effective shielding material, 
at least for static fields . Outside 
the conductor the E0 field vectors 
are changed so that they are nor
mal to the surface. 

In dielectrics, the large energy 
gap means the electrons are elas
tically attached to the lattice and 
only slight shifts are experi
enced. E 0 and Ed don't cancel 
each other completely. In a simple 
dielectric, pairs of internal 
charges, - q and + q, are sepa
rated by a distance R taken in the 
direction of E0 , from - q to + q. 
Those pairs of negative - q and 
positive + q charges are called 
electric dipoles. The vector quan
tity, qR, is called the electric di
pole moment. If there are n 
dipoles per unit volume, then a 
measure of the polarization can 
be expressed as 

P = n(qR){ (C·m/m3= Cfm2), 
which is called the dipole mo
ment per unit volume. ~ is a 
function of the alignment and 
ranges from 0 to 1. For simple 
materials ~ = 1. Since n, q, R , and 
~ depend on the material, 

P = E0 xE 
where x, the electric suscep
tibility, is a measure of the ease of 
polarization of the material. E0 is 
present to maintain correct 
units. The so called depolariza
tion field Ed is equal to - "{P/E0 , 

where 'Y is a number between 0 
and 1, and is related to the geom
etry of the material. Ed is not , in 
general, very useful. 

The surface charge ab is an ac
tual accumulation of charges 

continued on page 82 
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continued from page 59 

that are bound directly to the 
atom and cannot flow. If N is of 
magnitude land is normal to the 
surface then 

ab = P·N (Cfm2). 

Imagine a Gaussian surface in
side the dielectric. With a 
nonuniform charge distribution 
some of the bound charges will be 
displaced across the surface by P, 
leaving a net charge within the 
surface. In the same manner that 
we found V · E = pE0 , where pis the 
volume charge density of all the 
charges contributing to E, we 
can see that the volume charge 
density in the dielectric is 

V' ·P = - pb (C/m3). 
The negative sign means that the 
d ipole moment per unit volume, 
P , points from negative to 
positive in the dipoles. 

It is customary and convenient 
to consider a field associated with 
just the free charge density Pr 
since Pb is due to the response of 
the material. That field must be 
due to the total charge density 
less the bound charge density, 
therefore 

Pt = P - Pb = V' ·eaE + V' ·P = V' ·[e0 E + P]. 
The term in brackets is called the 
displacement field vector 

D = e0 E + P (C/m2 ). 

In simple dielectrics, P and E 
are parallel, and the following re
lation holds true 

D = e0 (1 + x)E =eE. 

E0 can now be interpreted as the 
ability of empty space to support 
an electric field, and is called the 
permittivity of free space. E is the 
permittivity of the material. A 
commonly used quantity is the 
dielectric constant 

K = 1 + x = e/e0 . 

K is greater than l for any materi
al, and goes to infinity for a con
ductor becaus e E = 0 in a 
conductor. K can be thought of as 
a measure of the modification of 
free space by the presence of a 
material. 

From our previous analysis, we 
have obtained one of Maxwell 
equations, Gauss' law w hich 
reads 

V' ·D = Pt· 
Gauss' law says that the apparent 
spreading out of the dis place
ment field vector D through a 
Gaussian surface is due to the 
density of free charges ins ide. 
Gauss' law doesn't say, however, 

that D is not producing a swirl. 
The static E contribution can't 
produce swirling, but the P con
tribution can. 
Capacitance 

We know that two conductors, 
separated by a dielectric with di
electric constant k, form a capac
itor. If one conductor has charge 
+ q and the other - q, the mea
sure of the amount of charge that 
must be placed on a conductor to 
change its potential by one volt is 
called the capacitance, which is 
in units of coulombs per volt 

C = q!V (farads). 
If the free charge q increases, 

the displacement field vector D , 
which equals the E0 k field also 
increases. That causes a propor
tionate increase in voltage as E 
rises. Given a particular charge 
q, the only way to change the ca
pacitance is to ch ange the volt
age . That can be d one by 
changing the charge separation 
distances or by changing the 
properties of space to give dif
ferent E's. Simply filling the sepa
ration space with a material of 
greater dielectric constant re
duces the E field in that space, 
which reduces the voltage and in
creases the capacitance. 

We can use Gauss' law, withou t 
involved calculations, to deter
mine the change in the electric 
field when any capacitor is filled 
with a dielectric. In empty space, 
P = 0 and all the charges are free 
charges, therefore 

V' ·D/e0 = V'·E = PtiE0 , 

and 
V' ·D/e0 = V' X E = O . 

If the space is filled with a simple 
dielectric, D = E0 kE, therefore 

V' ·D/eo = V'·kE = PtiEo. 
Pis aligned withE so there is no 
apparent rotation and 

V' x D/e0 = V' XkE = O . 
The divergence and curl of E 

completely characterize the field. 
By comparison, the E for a 
ch a rged cap acitor with empty 
space as a dielectric is the same 
as kE for the same charged ca
pacitor with a dielectric constant 
k. In a capacitor filled with a di
electric, E is reduced by llk . The 
capacitance C = qN is increased 
by k s ince the voltage potential V 
is reduced by llk. 

In our next edition, we'lllook at 
the effects of electric charges in 
motion. We 'll s ee that another 
type of field, the B field, is re
quired to descr ibe the magn etic 
forces associated with them. R-E 

EQUIPMENT REPORT 

continued f rom page 18 

frequency steps. 
A number of scanning functions 

are available: full memory scan , mem
ory block scan , and seek scan, (with 
two delay modes). The RB can also 
be set to scan from the frequency of 
VFO A to VFO B. The two VFO's are 
available so that you can instantly 
switch and tune between two dif
ferent frequencies . The second VFO 
can be thought of as a sort of tempo
rary memory location. One of the nic
est features is that you can instantly 
transfer the frequency of the active 
VFO into the inactive one. So if 
you're tuning and come across an 
interesting signal- but not the one 
you're looking for-you can put it in
stantly in the inactive VFO as you 
continue your search. Returning to 
the interesting frequency is only two 
keystrokes away. 

A partial list of its built-in features 
include an RS-232-compatible inter
face that allows your computer to 
take complete control over all func
tions of the receiver. Two antenna 
connectors are provided. One is a 
coaxial S0-239 connector for 50-
ohm anten nas , th e second is a 
spring-clip connector that can be 
used for 50- or 500-ohm antennas. 
The appropriate antenna can be se
lected from the front panel. An exter
nal-speaker jack and a headphone 
jack are provided, as are line-level au
dio connectors (for recorders or 
CW/ RTTY demodula tors). A MUTE 

connector lets the RB be used in con
junction with a transmitter. 

We were impressed by the quality 
of the Drake RB. It is easy to use 
thanks in part to the clean layout of 
the controls, and to Drake's decision 
not to clutter up the front panel with a 
lot of unnecessary controls Cwhich 
some manufacturers seem to think 
looks " hi tech" ). We were even more 
impressed by the control the RB gave 
us to hear the weaker signals we 
would have simply ignored on other 
world-band radios. 

If you're not famil iar w ith world
band radio, don't even think of the 
RB. You simply won't appreciate what 
it can do for you. But if you're a short
wave enthusiast who is looking for 
something special and have about 
$ 1000 to invest, then we've found the 
receiver of your dreams. R-E 




