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is related to the magnetic field.

IN OUR LAST EDITION, WE DISCUSSED
the characteristics of a static
magnetic field in empty space. In
this article we'll look further into
the B field and its effects on mat-
ter. Of particular importance, we
will show that the magnetic field
in matter can be found by using
the linear superposition of free
and bound current densities.

Potential

If you recall, the expression
VxB=p,J says that the appar-
ent rotation of the B field around
a small region about a point is
proportional to the current den-
sity in that region. Unless the
current density or charge per
unit area J is zero. B cannot be
the gradient of a scalar potential
and therefore is not a con-
servative field. However, in re-
%ions that have no current flow,

xB=0. In that case, the field is
conservative and a scalar poten-
tial can be defined. Suppose a
small current loop, the B-field in-
strument §Idl, is moved quasi-
statically from point A to B in
such a region as shown in Fig.
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1. The force in the direction of
motion dL gives the work done
or change in magnetic potential
energy

AU, =—J': [(§|d|}xa] Widls

The work depends not only on
the path taken but on the orien-
tation of §1dl along the path. No
work is done if (fIdl) XB is al-
ways perpendicular to dL. Work
is done if, at any place along the
path, fIdl is rotated so that
(fIdl) x B has some component
parallel to dL. That is the me-
chanical energy due to the work
done against the torque.
Additional energy is required
to maintain the current I in the
loop. If the loop has resistance
R, then I2R is the rate of ther-
mal energy loss. That energy
must come from someplace,
and if the magnetic field en-
closed by the loop changes,
more energy is required. We'll

discuss the reason why addi-
tional energy is required in our
next article.

Previously, we saw that any
field with zero divergence is the
curl of some other field. Since
V-B=0, it must be that
B=VXxA. The A field is called
the magnetic vector potential.
It is not an energy field (energy
is a scalar quantity), but it can
be used in energy calculations.
The main advantage in using
the A field is that calculations
required to solve many real-
world problems are simplified.
Since we won't be doing any cal-
culations here, we will just say
that the A field is real in the
same sense as the B field.

We can use the analogy that
the A field describes action at a
distance from the B field just as
the B field describes action at a
distance from a current loop.
The E field is also used to de-
scribe action at a distance from
an electric charge. An appropri-
ate instrument can be placed in
a region of an A field, even
through the E and B fields are



FIG. 1—A MAGNETIC DIPOLE IN A B
FIELD is moved from point A to B along
the path composed of d, . The force vector
on any small segment of the current loop
is dF,,, = Idl x B. dF, is directed out of the
page as is the total force F=#ldl x B. The
force vector is perpendicular to dL, so the
work done on F-d_ is zero. If the dipole is
rotated so that F was not normal to the
paper, then work would be done.

zero there, and an influence can
be measured. The Bohm-
Aharanov effect is an example.

Magnetic “current”’

Recall that V:B =0 says that the
lines of magnetic flux are closed
lines. Nothing material flows
along these lines but we can
make an analogy with the closed
path of a constant electric cur-
rent. The magnitude of B in the
magnetic circuit of Fig. 2—a can
be found from §B-dL = uI, where
L is the total length of the mag-
netic path, p describes a prop-
erty of the path material to be
discussed later, and 1 is the total
electric current enclosing the
path. There are n turns of wire
each carrying current I, so
I=nl,. Since the material is
uniform, the magnitude of B
must be independent when dL
is being summed. So, denoting
the magnitude of B as B and
summing by integration gives

BL = pnlo.

The magnetic flux is
&=[B-ds

where s is the cross-sectional
area of the path. Since the area is
uniform

nl
0=BS=—2

L/uS

In the circuit shown in Fig. 2—b,
a current I exists in a material of
length L, conductivity o, and
cross-sectional area S. The volt-
age is supplied by n cells, consist-
ing of V volts each. From Ohm's
law
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FIG. 2—MAGNETIC FLUX IS ANALOGOUS TO ELECTRIC CURRENT. In (a) the magnetic
path of length L and cross-sectional area S is in a material of permeability .. The source of
magnetomotive force nl, is the current |, encircling the material n times. In (b) the
electrical path is in a material of conductivity o. The source of electromotive forcenVis a
battery of n cells each with a voitage V.
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The so-called magnetomotive
force nl, can be compared to the
voltage nV. The magnetomotive
force is summed in the same way
voltages are summed. . is similar
to o, which suggests that L/pS is
a magnetic resistance Ry, called
reluctance. Those facts, along
with the motivating fact that
electric current and magnetic
flux form closed paths (implying
a conservation of something), al-
low analogous magnetic circuit
equations to be developed.

netic poles appear at the ends of
the material. We say the material
has an induced magnetic field, a
magnetic polarization, or simply
that it is magnetized. This induc-
ed magnetic field is called the de-
magnetization field B,. The total
magnetic field in the material is
B,=B_+B,. B, is antiparallel to
B, so B, has a smaller magnitude
than B,. Such a material exhibit-
ing those characteristics is called
diamagnetic.

In some materials there are ad-
ditional magnetic dipoles result-
ing from electrons with unpaired
spins. Their magnetic dipole mo-
ments are normally oriented ran-
domly. When placed in an
external magnetic field, the wave
functions are changed in such a
way that there is a higher proba-
bility of the magnetic dipole mo-
ments being aligned parallel to
the B, as shown in Fig.—4b. B, is
aligned parallel to B, so B; has
greater magnitude than B_. A
material exhibiting those charac-
teristics is called paramagnetic.

In many materials, when the
external B, field is removed, the
wave functions return to their
original form within a short time
and B, becomes zero. However, in
ferromagnetic materials the wave
functions don't return com-
pletely and in some regions,
called magnetic domains, re-
sidual alignment remains. It is as
ifeach domain supplies a B, to all
other domains, thus maintain-
ing some B, in each.

B, is not a particularly useful
quantity. If there are n magnetic
dipoles per unit volume, then a

Magnetic field in materials

In any material there are small
current loops or magnetic di-
poles formed by the atomic-scale
rotational and orbital motions of
the electrons and charges in the
nuclei, as shown in Fig. 3. The
vector quantity Is (where s is the
area of each atomic-current
loop). is the magnetic dipole mo-
ment. Normally the magnetic di-
pole moments have random
orientations, so no average or
macroscopic magnetic field is
present.

When a material is placed in an
external magnetic field B, the
quantum-wave functions are
changed in such a way that there
is a higher probability of the
magnetic dipole moments being
aligned antiparallel to the B, as
shown in Fig. 4—a. The direc-
tions may not all exactly align
and may not be uniform except in
what we call simple magnetic ma-
terials. The net effect is that mag-
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FIG. 3-ATOMIC-SCALE CURRENT LOOPS
in a material form magnetic dipoles. The
magnitude and direction are given by the
magnetic dipole moment Is, where s is the
area enclosed by the loop current I. The
direction is given by the right-hand rule.
Normally, the directions are random and
no net magnetic field results.

measure of the total magnetic po-
larization is

M=n(Is){ (A/m)

called the magnetic dipole mo-
ment per unit volume (or just
magnetization). { is a function of
the average alignment of the di-
poles with the external field and
takes on values from —1 for total
antiparallel alignment to +1 for
total parallel alignment. B, and
M are related by a factor that
takes into account properties of
the material.

We can use the idea of Ampere's
law, which says the apparent ro-
tation of a magnetic field around
a small region is proportional to
the current per unit area in that
region, to account for the M field.
On an average, the atomic-scale
magnetic-dipole currents cancel
everywhere in a material except
at the surface, as shown in Fig. 5.
M can therefore be attributed toa
bound surface current I, around
an area of magnitude S in a mate-
rial of length x. The magnitude of
M is simply the magnetic dipole
moment per unit volume as illus-
trated by

16S/(XS) = lp/x.

It's sometimes convenient to de-
fine a lineal-surface current den-
sity as
K,=MxN (A/m)

where N is a unit vector normal to
the surface. The curl of M is
found the same way Ampere’s law
for static currents was derived,
except the current density of con-
cern is the average atomic-scale
volume current density bound in
the material J,,. That gives us the
formula:

VxM=J, (A/m3).
A convenient way to separate

the external and internal contri-
butions is to consider the total
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FIG. 4—MATERIALS IN AN EXTERNAL MAGNETIC FIELD B, exhibit magnetization. In (a),
magnetic dipole moments tend to align antiparallel to B,. Demagnetization B4 opposes
B, and the internal magnetic field B, is smaller in magnitude than B,. In (b), the dipole
moments tend to align parallel to B, due to unpaired electrons. B, is greater in magnitude
than B,. In both cases the magnetization per unit volume M is related to B,. The vectors

are shown outside of the material for clarity.

FIG. 5—ELECTRIC CURRENTS associated with individual magnetic dipoles cancel in-
side the material. At the surface, however, the currents are in the same direction resulting
in a net surface current I, |, is bound to the surface since it consists of pieces of the

dipole currents bound in the material.

current density J as a linear su-
perposition of J, due to the mate-
rial and all other currents called
the free current density J,. From
Ampere’s law, it can then be con-
cluded that

1
Jy=d=J, =—(VxB)-VxM=
Hy
]
Vx| —B-M|
Lo

The term in brackets is called the
magnetic-field intensity or just
the magnetic field (not to be con-
fused with the B field)

H= LB -M.
Ho

In simple materials, B and M are
along the same line so
B=pg(l+x,) and H=pH. %, is
called the magnetic suscep-
tibility and p is the magnetic per-
meability of the material. A
commonly used quantity is the
relative permeability which can
be written as

e =1+ %m = p/po.
I, is less than 1 for diamagnetic

materials and greater than 1 for
paramagnetic materials. In fer-
romagnetic materials, p_ is very
large but the H and M rela-
tionship is generally more com-
plicated and p, is not a simple
constant.
Ampere's law now says

Vxnzi

This says that the apparent rota-
tion of the H field around a small
region is due to the density of free
current through that region. One
of Maxwell's great contribuiton
was the modification of Ampere’s
law.

Inductance
We know that a conductive
loop, enclosing empty space or
some material, forms an induc-
tor. If the loop is carrying a con-
stant current I, then a propor-
tional magnetic flux exists
through the area s enclosed by
the loop. The constant of propor-
tionality is the inductance, in
units of webers per ampere, or
henrys
continued on page 87



ELECTROMAGCNETICS
continued from page 69

L=®/l=(fB-ds)/I (H).

Since B may not be constant
across the area, we sum each infi-
nitesimal contribution by inte-
gration. Note that we're con-
cerned with the flux through the
enclosed area, not the total flux
through a Gaussian surface en-
closing the loop, which is zero.
For simple materials, L is inde-

pendent of I since the equation
B = pH is proportional to I. How-
ever, L is dependent upon the
area since the equation |B-ds de-
pends on the total area being
summed. The inductance (L) is
also dependent on .

We can use Ampere's law to see
that effect. In empty space, M=0
and there are no bound currents,
S0 we can say

VxH=VxBlug=1d

and
V-H=V-B=0.

With a simple material filling

space, H=B/mu, so

\"xH=VXBIp,—.—J,
and
V-H=V-B/n=0.

Since the divergence and curl of
the field completely characterize
the fields, B is larger by w/po= 1.,
in a filled inductor.

In our next article, we'll look at
the effects of electric and magnet-
ic fields as they change with time.
We'll see that these fields are so
closely related to each other that
they lead to a single electromag-
netic field. R-E






